Búsqueda

Ruin with insurance and financial risks following the least risky FGM dependence structure

<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-8.xsd">
<mods version="3.8">
<titleInfo>
<title>Ruin with insurance and financial risks following the least risky FGM dependence structure</title>
</titleInfo>
<name type="personal" usage="primary" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20150012845">
<namePart>Chen, Yiqing</namePart>
<nameIdentifier>MAPA20150012845</nameIdentifier>
</name>
<typeOfResource>text</typeOfResource>
<genre authority="marcgt">periodical</genre>
<originInfo>
<place>
<placeTerm type="code" authority="marccountry">esp</placeTerm>
</place>
<dateIssued encoding="marc">2015</dateIssued>
<issuance>serial</issuance>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</language>
<physicalDescription>
<form authority="marcform">print</form>
</physicalDescription>
<abstract displayLabel="Summary">Recently, Chen (2011) studied the finite-time ruin probability in a discrete-time risk model in which the insurance and financial risks form a sequence of independent and identically distributed random pairs with common bivariate FarlieGumbelMorgenstern (FGM) distribution. The parameter 0 of the FGM distribution governs the strength of dependence, with a smaller value of 0 corresponding to a less risky situation. For the subexponential case with -1<0=1, a general asymptotic formula for the finite-time ruin probability was derived. However, the derivation there is not valid for the least risky case 0=-1. In this paper, we complete the study by extending it to ?=-1. The new formulas for 0=-1 look very different from, but are intrinsically consistent with, the existing one for -1<0=1, and they offer a quantitative understanding on how significantly the asymptotic ruin probability decreases when ? switches from its normal range to its negative extremum.</abstract>
<note type="statement of responsibility">Yiqing Chen, Jiajun Liu, Fei Liu</note>
<classification authority="">6</classification>
<location>
<url displayLabel="MÁS INFORMACIÓN" usage="primary display">mailto:centrodocumentacion@fundacionmapfre.org?subject=Consulta%20de%20una%20publicaci%C3%B3n%20&body=Necesito%20m%C3%A1s%20informaci%C3%B3n%20sobre%20este%20documento%3A%20%0A%0A%5Banote%20aqu%C3%AD%20el%20titulo%20completo%20del%20documento%20del%20que%20desea%20informaci%C3%B3n%20y%20nos%20pondremos%20en%20contacto%20con%20usted%5D%20%0A%0AGracias%20%0A</url>
</location>
<relatedItem type="host">
<titleInfo>
<title>Insurance : mathematics and economics</title>
</titleInfo>
<originInfo>
<publisher>Oxford : Elsevier, 1990-</publisher>
</originInfo>
<identifier type="issn">0167-6687</identifier>
<identifier type="local">MAP20077100574</identifier>
<part>
<text>04/05/2015 Volumen 62 - mayo 2015 </text>
</part>
</relatedItem>
<recordInfo>
<recordContentSource authority="marcorg">MAP</recordContentSource>
<recordCreationDate encoding="marc">150626</recordCreationDate>
<recordChangeDate encoding="iso8601">20150707153723.0</recordChangeDate>
<recordIdentifier source="MAP">MAP20150023704</recordIdentifier>
<languageOfCataloging>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</languageOfCataloging>
</recordInfo>
</mods>
</modsCollection>