Búsqueda

Optimal risk transfer : a numerical optimization approach

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20180029172</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20181016165007.0</controlfield>
    <controlfield tag="008">181016e20180903esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Optimal risk transfer</subfield>
      <subfield code="b">: a numerical optimization approach</subfield>
      <subfield code="c">Alexandru V. Asimit...[et.al]</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">Capital efficiency and asset/liability management are part of the Enterprise Risk Management Process of any insurance/reinsurance conglomerate and serve as quantitative methods to fulfill the strategic planning within an insurance organization. A considerable amount of work has been done in this ample research field, but invariably one of the last questions is whether or not, numerically, the method is practically implementable, which is our main interest. The numerical issues are dependent on the traits of the optimization problem, and therefore we plan to focus on the optimal reinsurance design, which has been a very dynamic topic in the last decade. The existing literature is focused on finding closed-form solutions that are usually possible when economic, solvency, and other constraints are not included in the model. Including these constraints, the optimal contract can be found only numerically. The efficiency of these methods is extremely good for some well-behaved convex problems, such as Second-Order Conic Problems. Specific numerical solutions are provided to better explain the advantages of appropriate numerical optimization methods chosen to solve various risk transfer problems. The stability issues are also investigated together with a case study performed for an insurance group that aims capital efficiency across the entire organization.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080591182</subfield>
      <subfield code="a">Gerencia de riesgos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080615673</subfield>
      <subfield code="a">Transferencia de riesgos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080579258</subfield>
      <subfield code="a">Cálculo actuarial</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000239</subfield>
      <subfield code="t">North American actuarial journal</subfield>
      <subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
      <subfield code="x">1092-0277</subfield>
      <subfield code="g">03/09/2018 Tomo 22 Número 3 - 2018 , p. 341-364</subfield>
    </datafield>
    <datafield tag="856" ind1=" " ind2=" ">
      <subfield code="y">MÁS INFORMACIÓN</subfield>
      <subfield code="u">mailto:centrodocumentacion@fundacionmapfre.org?subject=Consulta%20de%20una%20publicaci%C3%B3n%20&body=Necesito%20m%C3%A1s%20informaci%C3%B3n%20sobre%20este%20documento%3A%20%0A%0A%5Banote%20aqu%C3%AD%20el%20titulo%20completo%20del%20documento%20del%20que%20desea%20informaci%C3%B3n%20y%20nos%20pondremos%20en%20contacto%20con%20usted%5D%20%0A%0AGracias%20%0A</subfield>
    </datafield>
  </record>
</collection>