Generalized quantiles as risk measures
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20140006700</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20140227133441.0</controlfield>
<controlfield tag="008">140220e20140113esp|||p |0|||b|spa d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="245" ind1="0" ind2="0">
<subfield code="a">Generalized quantiles as risk measures</subfield>
<subfield code="c">Fabio Bellini...[et.al]</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">In the statistical and actuarial literature several generalizations of quantiles have been considered, by means of the minimization of a suitable asymmetric loss function. All these generalized quantiles share the important property of elicitability, which has received a lot of attention recently since it corresponds to the existence of a natural backtesting methodology. In this paper we investigate the case of M-quantiles as the minimizers of an asymmetric convex loss function, in contrast to Orlicz quantiles that have been considered in Bellini and Rosazza Gianin (2012). We discuss their properties as risk measures and point out the connection with the zero utility premium principle and with shortfall risk measures introduced by Föllmer and Schied (2002). In particular, we show that the only M-quantiles that are coherent risk measures are the expectiles, introduced by Newey and Powell (1987) as the minimizers of an asymmetric quadratic loss function. We provide their dual and Kusuoka representations and discuss their relationship with CVaR. We analyze their asymptotic properties for a?1 and show that for very heavy tailed distributions expectiles are more conservative than the usual quantiles. Finally, we show their robustness in the sense of lipschitzianity with respect to the Wasserstein metric.</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077100574</subfield>
<subfield code="t">Insurance : mathematics and economics</subfield>
<subfield code="d">Oxford : Elsevier, 1990-</subfield>
<subfield code="x">0167-6687</subfield>
<subfield code="g">13/01/2014 Volumen 54 Número 1 - enero 2014 </subfield>
</datafield>
<datafield tag="856" ind1=" " ind2=" ">
<subfield code="y">MÁS INFORMACIÓN</subfield>
<subfield code="u">mailto:centrodocumentacion@fundacionmapfre.org?subject=Consulta%20de%20una%20publicaci%C3%B3n%20&body=Necesito%20m%C3%A1s%20informaci%C3%B3n%20sobre%20este%20documento%3A%20%0A%0A%5Banote%20aqu%C3%AD%20el%20titulo%20completo%20del%20documento%20del%20que%20desea%20informaci%C3%B3n%20y%20nos%20pondremos%20en%20contacto%20con%20usted%5D%20%0A%0AGracias%20%0A</subfield>
</datafield>
</record>
</collection>