Distributionally robust goal-reaching optimization in the presence of background risk
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20220023740</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20220915134628.0</controlfield>
<controlfield tag="008">220915e20220912esp|||p |0|||b|spa d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="0">MAPA20110012106</subfield>
<subfield code="a">Chi, Yichun</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Distributionally robust goal-reaching optimization in the presence of background risk</subfield>
<subfield code="c">Yichun Chi</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">In this article, we examine the effect of background risk on portfolio selection and optimal reinsurance design under the criterion of maximizing the probability of reaching a goal. Following the literature, we adopt dependence uncertainty to model the dependence ambiguity between financial risk (or insurable risk) and background risk. Because the goal-reaching objective function is nonconcave, these two problems bring highly unconventional and challenging issues for which classical optimization techniques often fail. Using a quantile formulation method, we derive the optimal solutions explicitly. The results show that the presence of background risk does not alter the shape of the solution but instead changes the parameter value of the solution. Finally, numerical examples are given to illustrate the results and verify the robustness of our solutions.
</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080591182</subfield>
<subfield code="a">Gerencia de riesgos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080579258</subfield>
<subfield code="a">Cálculo actuarial</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077000239</subfield>
<subfield code="g">12/09/2022 Tomo 26 Número 3 - 2022 , p. 351-382</subfield>
<subfield code="x">1092-0277</subfield>
<subfield code="t">North American actuarial journal</subfield>
<subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
</datafield>
</record>
</collection>