Búsqueda

Selecting nonpharmaceutical interventions for influenza

<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-8.xsd">
<mods version="3.8">
<titleInfo>
<title>Selecting nonpharmaceutical interventions for influenza</title>
</titleInfo>
<typeOfResource>text</typeOfResource>
<genre authority="marcgt">periodical</genre>
<originInfo>
<place>
<placeTerm type="code" authority="marccountry">esp</placeTerm>
</place>
<dateIssued encoding="marc">2013</dateIssued>
<issuance>serial</issuance>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</language>
<physicalDescription>
<form authority="marcform">print</form>
</physicalDescription>
<abstract displayLabel="Summary">Models of influenza transmission have focused on the ability of vaccination, antiviral therapy, and social distancing strategies to mitigate epidemics. Influenza transmission, however, may also be interrupted by hygiene interventions such as frequent hand washing and wearing masks or respirators. We apply a model of influenza disease transmission that incorporates hygiene and social distancing interventions. The model describes population mixing as a Poisson process, and the probability of infection upon contact between an infectious and susceptible person is parameterized by p. While social distancing interventions modify contact rates in the population, hygiene interventions modify p. Public health decision making involves tradeoffs, and we introduce an objective function that considers the direct costs of interventions and new infections to determine the optimum intervention type (social distancing versus hygiene intervention) and population compliance for epidemic mitigation. Significant simplifications have been made in these models. However, we demonstrate that the method is feasible, provides plausible results, and is sensitive to the selection of model parameters. Specifically, we show that the optimum combination of nonpharmaceutical interventions depends upon the probability of infection, intervention compliance, and duration of infectiousness. Means by which realism can be increased in the method are discussed.</abstract>
<note type="statement of responsibility">Rachael M. Jones, Elodie Adida</note>
<classification authority="">7</classification>
<location>
<url displayLabel="MÁS INFORMACIÓN" usage="primary display">mailto:centrodocumentacion@fundacionmapfre.org?subject=Consulta%20de%20una%20publicaci%C3%B3n%20&body=Necesito%20m%C3%A1s%20informaci%C3%B3n%20sobre%20este%20documento%3A%20%0A%0A%5Banote%20aqu%C3%AD%20el%20titulo%20completo%20del%20documento%20del%20que%20desea%20informaci%C3%B3n%20y%20nos%20pondremos%20en%20contacto%20con%20usted%5D%20%0A%0AGracias%20%0A</url>
</location>
<relatedItem type="host">
<titleInfo>
<title>Risk analysis : an international journal</title>
</titleInfo>
<originInfo>
<publisher>McLean, Virginia : Society for Risk Analysis, 1987-2015</publisher>
</originInfo>
<identifier type="issn">0272-4332</identifier>
<identifier type="local">MAP20077000345</identifier>
<part>
<text>05/08/2013 Volumen 33 Número 8 - agosto 2013 </text>
</part>
</relatedItem>
<recordInfo>
<recordContentSource authority="marcorg">MAP</recordContentSource>
<recordCreationDate encoding="marc">130927</recordCreationDate>
<recordChangeDate encoding="iso8601">20131001143358.0</recordChangeDate>
<recordIdentifier source="MAP">MAP20130030210</recordIdentifier>
<languageOfCataloging>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</languageOfCataloging>
</recordInfo>
</mods>
</modsCollection>