Búsqueda

Equations to predict female manual arm strength based on hand location relative to the shoulder

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20140019250</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20140530130412.0</controlfield>
    <controlfield tag="008">140527e20140203esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">875</subfield>
    </datafield>
    <datafield tag="245" ind1="0" ind2="0">
      <subfield code="a">Equations to predict female manual arm strength based on hand location relative to the shoulder</subfield>
      <subfield code="c">Nicholas J. La Delfa...[et.al]</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">The purpose of this study was to develop regression equations to predict manual arm strength for a wide variety of hand locations within the reach envelope. Maximum voluntary manual arm strength was determined from 71 female participants in six exertion directions (superior, inferior, anterior, posterior, medial and lateral), in a total of 28 hand locations. Forces ranged from 51.3 to 164.4 N, and had a pooled coefficient of variation of 29.9%. Across all 168 combinations of hand locations and exertion directions, the multivariate regression equations explained 92.5% of the variance and had a root mean square error (RMSE) of only 6.4 N, using only the anterior, lateral and vertical location of the hand relative to the active shoulder joint as inputs. These equations provide a proof-of-principle for our novel regression approach, and represent a first step towards a more comprehensive equation to estimate maximum acceptable forces for occupational tasks.</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20100019818</subfield>
      <subfield code="t">Ergonomics : the international journal of research and practice in human factors and ergonomics</subfield>
      <subfield code="d">Oxon [United Kingdom] : Taylor & Francis, 2010-</subfield>
      <subfield code="x">0014-0139</subfield>
      <subfield code="g">03/02/2014 Volumen 57 Número 2 - febrero 2014 </subfield>
    </datafield>
  </record>
</collection>