Búsqueda

Cyber assets at risk : monetary impact of U.S personally identifiable information mega data breaches

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20200032854</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20201020131111.0</controlfield>
    <controlfield tag="008">201015e20201001che|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">7</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Cyber assets at risk</subfield>
      <subfield code="b">: monetary impact of U.S personally identifiable information mega data breaches</subfield>
      <subfield code="c">Omer IIker Poyraz...[Et al.]</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">This study investigates various factors that can affect the monetary impact of data breaches on companies. This paper introduces a model for the total cost of a mega data breach based on a data set created from multiple sources that categorises stolen data for U.S. residents as personally identifiableinformation (PII) and sensitive personally identifiable information (SPII). Weuse a rigorous stepwise regression analysis that includes polynornial and factorial multilevel effects of the independent variables.There are three significant findings. First, our model finds a significantrelation between total data breach cost and revenue, the total amount of PIl and SPIl, and class action lawsuits. Second, the categorisation of personal information as sensitive and non-sensitive explains the cost better than previous work. Finally, all of the independent variables demonstrate multilevelfactorial interactions.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080580872</subfield>
      <subfield code="a">Impacto económico</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20160007633</subfield>
      <subfield code="a">Ciberriesgos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20190012508</subfield>
      <subfield code="a">Brecha de protección</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080592875</subfield>
      <subfield code="a">Protección de datos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20140022700</subfield>
      <subfield code="a">Ciberseguridad</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080591182</subfield>
      <subfield code="a">Gerencia de riesgos</subfield>
    </datafield>
    <datafield tag="651" ind1=" " ind2="1">
      <subfield code="0">MAPA20080638337</subfield>
      <subfield code="a">Estados Unidos</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20200020776</subfield>
      <subfield code="a">IIker Poyraz, Omer </subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077100215</subfield>
      <subfield code="t">Geneva papers on risk and insurance : issues and practice</subfield>
      <subfield code="d">Geneva : The Geneva Association, 1976-</subfield>
      <subfield code="x">1018-5895</subfield>
      <subfield code="g">01/10/2020 Volumen 45 Número 4 - octubre 2020 , p. 616-638</subfield>
    </datafield>
  </record>
</collection>