Investigating the Impact of Curriculum Learning on Reinforcement Learning for Improved Navigational Capabilities in Mobile Robots
Contenido multimedia no disponible por derechos de autor o por acceso restringido. Contacte con la institución para más información.
Tag | 1 | 2 | Valor |
---|---|---|---|
LDR | 00000cab a2200000 4500 | ||
001 | MAP20240013325 | ||
003 | MAP | ||
005 | 20240829121917.0 | ||
008 | 240829e20240619esp|||p |0|||b|eng d | ||
040 | $aMAP$bspa$dMAP | ||
084 | $a922.134 | ||
100 | 1 | $0MAPA20240020903$aIskandar, Alaa | |
245 | 1 | 0 | $aInvestigating the Impact of Curriculum Learning on Reinforcement Learning for Improved Navigational Capabilities in Mobile Robots$cAlaa Iskandar, Béla Kovács |
520 | $aThis paper proposes a method for finding the shortest path of a mobile robot using deep reinforcement learning with utilizing Proximal policy optimization algorithm (PPO) enhanced with curriculum learning. By modelling the environment in 3D space using the Webots simulator, we extend the PPO algorithm's capabilities to handle continuous states from 8 IR sensors and control the velocities of two motors of E-puck robot | ||
650 | 4 | $0MAPA20080611200$aInteligencia artificial | |
650 | 4 | $0MAPA20080542245$aRobots | |
650 | 4 | $0MAPA20080594589$aAnálisis comparativo | |
700 | 1 | $0MAPA20240020910$aKovács, Béla | |
773 | 0 | $wMAP20200034445$g19/06/2024 Volumen 27 Número 73 - junio 2024 , p. 163-176$x1988-3064$tRevista Iberoamericana de Inteligencia Artificial$d : IBERAMIA, Sociedad Iberoamericana de Inteligencia Artificial , 2018- | |
856 | $uhttps://journal.iberamia.org/index.php/intartif/article/view/974 |