Búsqueda

Investigating the Impact of Curriculum Learning on Reinforcement Learning for Improved Navigational Capabilities in Mobile Robots

Acceso al documento/Access the document
Registro MARC
Tag12Valor
LDR  00000cab a2200000 4500
001  MAP20240013325
003  MAP
005  20240829121917.0
008  240829e20240619esp|||p |0|||b|eng d
040  ‎$a‎MAP‎$b‎spa‎$d‎MAP
084  ‎$a‎922.134
1001 ‎$0‎MAPA20240020903‎$a‎Iskandar, Alaa
24510‎$a‎Investigating the Impact of Curriculum Learning on Reinforcement Learning for Improved Navigational Capabilities in Mobile Robots‎$c‎Alaa Iskandar, Béla Kovács
520  ‎$a‎This paper proposes a method for finding the shortest path of a mobile robot using deep reinforcement learning with utilizing Proximal policy optimization algorithm (PPO) enhanced with curriculum learning. By modelling the environment in 3D space using the Webots simulator, we extend the PPO algorithm's capabilities to handle continuous states from 8 IR sensors and control the velocities of two motors of E-puck robot
650 4‎$0‎MAPA20080611200‎$a‎Inteligencia artificial
650 4‎$0‎MAPA20080542245‎$a‎Robots
650 4‎$0‎MAPA20080594589‎$a‎Análisis comparativo
7001 ‎$0‎MAPA20240020910‎$a‎Kovács, Béla
7730 ‎$w‎MAP20200034445‎$g‎19/06/2024 Volumen 27 Número 73 - junio 2024 , p. 163-176‎$x‎1988-3064‎$t‎Revista Iberoamericana de Inteligencia Artificial‎$d‎ : IBERAMIA, Sociedad Iberoamericana de Inteligencia Artificial , 2018-
856  ‎$u‎https://journal.iberamia.org/index.php/intartif/article/view/974