A representation-learning approach for insurance pricing with images
<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-8.xsd">
<mods version="3.8">
<titleInfo>
<title>A representation-learning approach for insurance pricing with images</title>
</titleInfo>
<name type="personal" usage="primary" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20240021078">
<namePart>Blier-Wong, Christopher </namePart>
<nameIdentifier>MAPA20240021078</nameIdentifier>
</name>
<name type="personal" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20240021085">
<namePart>Lamontagne, Luc </namePart>
<nameIdentifier>MAPA20240021085</nameIdentifier>
</name>
<name type="personal" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20110002756">
<namePart>Marceau, É.</namePart>
<nameIdentifier>MAPA20110002756</nameIdentifier>
</name>
<typeOfResource>text</typeOfResource>
<genre authority="marcgt">periodical</genre>
<originInfo>
<place>
<placeTerm type="code" authority="marccountry">bel</placeTerm>
</place>
<dateIssued encoding="marc">2024</dateIssued>
<issuance>serial</issuance>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<form authority="marcform">print</form>
</physicalDescription>
<abstract displayLabel="Summary">Unstructured data are a promising new source of information that insurance companies may use to understand their risk portfolio better and improve the customer experience. However, these novel data sources are difficult to incorporate into existing ratemaking frameworks due to the size and format of the unstructured data. This paper proposes a framework to use street view imagery within a generalized linear model. To do so, we use representation learning to extract an embedding vector containing useful information from the image. This embedding is dense and low dimensional, making it appropriate to use within existing ratemaking models. We find that there is useful information included in street view imagery to predict the frequency of claims for certain types of perils. This model can be used as in a ratemaking framework but also opens the door to future empirical research on attempting to extract which characteristics within the image leads to increased or decreased predicted claim frequencies. Throughout, we discuss the practical difficulties (technical and social) of using this type of data for insurance pricing</abstract>
<note type="statement of responsibility">Christopher Blier-Wong, Luc Lamontagne and Etienne Marceau</note>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080586294">
<topic>Mercado de seguros</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080545062">
<topic>Precios</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080545338">
<topic>Seguros</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20150006509">
<topic>Experiencia del cliente</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20210011108">
<topic>Riesgo</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080627904">
<topic>Ciencias Actuariales y Financieras</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080541408">
<topic>Imagen</topic>
</subject>
<classification authority="">219</classification>
<location>
<url displayLabel="electronic resource" usage="primary display">https://www.cambridge.org/core/journals/astin-bulletin-journal-of-the-iaa/article/representationlearning-approach-for-insurance-pricing-with-images/E442676A2F597A9DBBDFC9FB986C3070</url>
</location>
<relatedItem type="host">
<titleInfo>
<title>Astin bulletin</title>
</titleInfo>
<originInfo>
<publisher>Belgium : ASTIN and AFIR Sections of the International Actuarial Association</publisher>
</originInfo>
<identifier type="issn">0515-0361</identifier>
<identifier type="local">MAP20077000420</identifier>
<part>
<text>15/05/2024 Volumen 54 Número 2 - mayo 2024 , p.280-309</text>
</part>
</relatedItem>
<recordInfo>
<recordContentSource authority="marcorg">MAP</recordContentSource>
<recordCreationDate encoding="marc">240830</recordCreationDate>
<recordChangeDate encoding="iso8601">20240830125047.0</recordChangeDate>
<recordIdentifier source="MAP">MAP20240013561</recordIdentifier>
<languageOfCataloging>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</languageOfCataloging>
</recordInfo>
</mods>
</modsCollection>