Uncertainty in climate change modeling : can global sensitivity analysis be of help?
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<rdf:Description>
<dc:date>2014-02-03</dc:date>
<dc:description xml:lang="es">Sumario: Integrated assessment models offer a crucial support to decisionmakers in climate policy making. For a full understanding and corroboration of model results, analysts ought to identify the exogenous variables that influence the model results the most (key drivers), appraise the relevance of interactions, and the direction of change associated with the simultaneous variation of uncertain variables. We show that such information can be directly extracted from the data set produced by Monte Carlo simulations. Our discussion is guided by the application to the well-known DICE model of William Nordhaus. The proposed methodology allows analysts to draw robust insights into the dependence of future atmospheric temperature, global emissions, and carbon costs and taxes on the model's exogenous variables.</dc:description>
<dc:identifier>https://documentacion.fundacionmapfre.org/documentacion/publico/es/bib/147112.do</dc:identifier>
<dc:language>spa</dc:language>
<dc:rights xml:lang="es">InC - http://rightsstatements.org/vocab/InC/1.0/</dc:rights>
<dc:type xml:lang="es">Artículos y capítulos</dc:type>
<dc:title xml:lang="es">Uncertainty in climate change modeling : can global sensitivity analysis be of help?</dc:title>
<dc:relation xml:lang="es">En: Risk analysis : an international journal. - McLean, Virginia : Society for Risk Analysis, 1987-2015 = ISSN 0272-4332. - 03/02/2014 Volumen 34 Número 2 - febrero 2014 </dc:relation>
</rdf:Description>
</rdf:RDF>