Appling the Tweedie model for improved microinsurance pricing
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20190024426</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20190830122815.0</controlfield>
<controlfield tag="008">190826e20190701che|||p |0|||b|eng d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="100" ind1="1" ind2=" ">
<subfield code="0">MAPA20080339968</subfield>
<subfield code="a">Peña Sánchez, Inmaculada</subfield>
</datafield>
<datafield tag="245" ind1="0" ind2="0">
<subfield code="a">Appling the Tweedie model for improved microinsurance pricing</subfield>
<subfield code="c">Inmaculada Peña Sánchez</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">Microinsurance usually involves basic rate making due to the lack of actuarial skills, causing microinsurers to add significant charges to premiums to compensate for unexpected variations in risk assesment. The situation could be improved by applying predictive modelling techniques to enable better pricing in the microinsurance market. This paper proposes the application of a generalised linear model with the Tweedie compound Poison-Gamma distribution for a bundled microinsurance in the Philippines. The risk factors considered are mainly derived from the available database and are related to the features of the insured. The results of the predictive analysis point out that there are three predictors that best fit the model: age of the insured, policy age, and population density. The application of the Tweedie model provides fair and accurate risk premiums that outperform the model currently applied by the company and enhance its risk control.</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080563394</subfield>
<subfield code="a">Microseguros</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080564322</subfield>
<subfield code="a">Tarificación</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080604394</subfield>
<subfield code="a">Valoración de riesgos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20190011365</subfield>
<subfield code="a">Modelo Tweedie</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077100215</subfield>
<subfield code="t">Geneva papers on risk and insurance : issues and practice</subfield>
<subfield code="d">Geneva : The Geneva Association, 1976-</subfield>
<subfield code="x">1018-5895</subfield>
<subfield code="g">01/07/2019 Volumen 44 Número 3 - julio 2019 , p- 365-381</subfield>
</datafield>
</record>
</collection>