Pesquisa de referências

Notes on discrete compound Poisson model with applications to risk theory

Registro MARC
Tag12Valor
LDR  00000cab a2200000 4500
001  MAP20150002471
003  MAP
005  20150122171255.0
008  150113e20141103esp|||p |0|||b|spa d
040  ‎$a‎MAP‎$b‎spa‎$d‎MAP
084  ‎$a‎6
1001 ‎$0‎MAPA20150002884‎$a‎Zhang, Huiming
24510‎$a‎Notes on discrete compound Poisson model with applications to risk theory‎$c‎Huiming Zhang, Yunxiao Liu, Bo Li
520  ‎$a‎Probability generating function (p.g.f.) is a powerful tool to study discrete compound Poisson (DCP) distribution. By applying inverse Fourier transform of p.g.f., it is convenient to numerically calculate probability density and do parameter estimation. As an application to finance and insurance, we firstly show that in the generalized CreditRisk+ model, the default loss of each debtor and the total default of all debtors are both approximately equal to a DCP distribution, and we give Le Cam¿s error bound between the total default and a DCP distribution. Next, we consider geometric Brownian motion with DCP jumps and derive its rth moment. We establish the surplus process of the difference of two DCP distributions, and numerically compute the tail probability. Furthermore, we define the discrete pseudo compound Poisson (DPCP) distribution and give the characterizations and examples of DPCP distribution, including the strictly decreasing discrete distribution and the zero-inflated discrete distribution with P(X=0)>0.5.
7730 ‎$w‎MAP20077100574‎$t‎Insurance : mathematics and economics‎$d‎Oxford : Elsevier, 1990-‎$x‎0167-6687‎$g‎03/11/2014 Volumen 59 Número 1 - noviembre 2014
856  ‎$y‎MÁS INFORMACIÓN‎$u‎mailto:centrodocumentacion@fundacionmapfre.org?subject=Consulta%20de%20una%20publicaci%C3%B3n%20&body=Necesito%20m%C3%A1s%20informaci%C3%B3n%20sobre%20este%20documento%3A%20%0A%0A%5Banote%20aqu%C3%AD%20el%20titulo%20completo%20del%20documento%20del%20que%20desea%20informaci%C3%B3n%20y%20nos%20pondremos%20en%20contacto%20con%20usted%5D%20%0A%0AGracias%20%0A