Pesquisa de referências

On a partial integrodifferential equation of Seal¿s type

Registro MARC
Tag12Valor
LDR  00000cab a2200000 4500
001  MAP20150023667
003  MAP
005  20150707153724.0
008  150626e20150504esp|||p |0|||b|spa d
040  ‎$a‎MAP‎$b‎spa‎$d‎MAP
084  ‎$a‎6
1001 ‎$0‎MAPA20080235727‎$a‎Willmot, Gordon E.
24510‎$a‎On a partial integrodifferential equation of Seal¿s type‎$c‎Gordon E. Willmot
520  ‎$a‎In this paper we generalize a partial integrodifferential equation satisfied by the finite time ruin probability in the classical Poisson risk model. The generalization also includes the bivariate distribution function of the time of and the deficit at ruin. We solve the partial integrodifferential equation by Laplace transforms with the help of Lagrange¿s implicit function theorem. The assumption of mixed Erlang claim sizes is then shown to result in tractable computational formulas for the finite time ruin probability as well as the bivariate distribution function of the time of and the deficit at ruin. A more general partial integrodifferential equation is then briefly considered.
7730 ‎$w‎MAP20077100574‎$t‎Insurance : mathematics and economics‎$d‎Oxford : Elsevier, 1990-‎$x‎0167-6687‎$g‎04/05/2015 Volumen 62 - mayo 2015
856  ‎$y‎MÁS INFORMACIÓN‎$u‎mailto:centrodocumentacion@fundacionmapfre.org?subject=Consulta%20de%20una%20publicaci%C3%B3n%20&body=Necesito%20m%C3%A1s%20informaci%C3%B3n%20sobre%20este%20documento%3A%20%0A%0A%5Banote%20aqu%C3%AD%20el%20titulo%20completo%20del%20documento%20del%20que%20desea%20informaci%C3%B3n%20y%20nos%20pondremos%20en%20contacto%20con%20usted%5D%20%0A%0AGracias%20%0A