Pesquisa de referências

Bayesian total loss estimation using shared random effects

Registro MARC
Tag12Valor
LDR  00000cab a2200000 4500
001  MAP20150023780
003  MAP
005  20150707153716.0
008  150626e20150504esp|||p |0|||b|spa d
040  ‎$a‎MAP‎$b‎spa‎$d‎MAP
084  ‎$a‎6
1001 ‎$0‎MAPA20150012876‎$a‎Baumgartner, Carolin
24510‎$a‎Bayesian total loss estimation using shared random effects‎$c‎Carolin Baumgartner, Lutz F. Gruber, Claudia Czado
520  ‎$a‎The pricing of insurance policies requires estimates of the total loss. The traditional compound model imposes an independence assumption on the number of claims and their individual sizes. Bivariate models, which model both variables jointly, eliminate this assumption. A regression approach allows policy holder characteristics and product features to be included in the model. This article presents a bivariate model that uses joint random effects across both response variables to induce dependence effects. Bayesian posterior estimation is done using Markov Chain Monte Carlo (MCMC) methods. A real data example demonstrates that our proposed model exhibits better fitting and forecasting capabilities than existing models.
7730 ‎$w‎MAP20077100574‎$t‎Insurance : mathematics and economics‎$d‎Oxford : Elsevier, 1990-‎$x‎0167-6687‎$g‎04/05/2015 Volumen 62 - mayo 2015
856  ‎$y‎MÁS INFORMACIÓN‎$u‎mailto:centrodocumentacion@fundacionmapfre.org?subject=Consulta%20de%20una%20publicaci%C3%B3n%20&body=Necesito%20m%C3%A1s%20informaci%C3%B3n%20sobre%20este%20documento%3A%20%0A%0A%5Banote%20aqu%C3%AD%20el%20titulo%20completo%20del%20documento%20del%20que%20desea%20informaci%C3%B3n%20y%20nos%20pondremos%20en%20contacto%20con%20usted%5D%20%0A%0AGracias%20%0A