Pesquisa de referências

Evaluating the impact of curriculum learning on the training process for an intelligent agent in a video game

<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-8.xsd">
<mods version="3.8">
<titleInfo>
<title>Evaluating the impact of curriculum learning on the training process for an intelligent agent in a video game</title>
</titleInfo>
<name type="personal" usage="primary" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20210034657">
<namePart>Camargo, Jorge E.</namePart>
<nameIdentifier>MAPA20210034657</nameIdentifier>
</name>
<name type="personal" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20210034664">
<namePart>Sáenz, Rigoberto</namePart>
<nameIdentifier>MAPA20210034664</nameIdentifier>
</name>
<typeOfResource>text</typeOfResource>
<genre authority="marcgt">periodical</genre>
<originInfo>
<place>
<placeTerm type="code" authority="marccountry">esp</placeTerm>
</place>
<dateIssued encoding="marc">2021</dateIssued>
<issuance>serial</issuance>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</language>
<physicalDescription>
<form authority="marcform">print</form>
<internetMediaType>application/pdf</internetMediaType>
</physicalDescription>
<abstract displayLabel="Summary">We want to measure the impact of the curriculum learning technique on a reinforcement training setup, several experiments were designed with different training curriculums adapted for the video game chosen as a case study. Then all were executed on a selected game simulation platform, using two reinforcement learning algorithms, and using the mean cumulative reward as a performance measure. Results suggest that curriculum learning has a significant impact on the training process, increasing training times in some cases, and decreasing them up to 40% percent in some other cases.

</abstract>
<accessCondition type="use and reproduction">La copia digital se distribuye bajo licencia "Attribution 4.0 International (CC BY NC 4.0)"</accessCondition>
<note type="statement of responsibility">Jorge E. Camargo, Rigoberto Sáenz</note>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080611200">
<topic>Inteligencia artificial</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20170005476">
<topic>Machine learning</topic>
</subject>
<classification authority="">922.134</classification>
<relatedItem type="host">
<titleInfo>
<title>Revista Iberoamericana de Inteligencia Artificial</title>
</titleInfo>
<originInfo>
<publisher> : IBERAMIA, Sociedad Iberoamericana de Inteligencia Artificial , 2018-</publisher>
</originInfo>
<identifier type="issn">1988-3064</identifier>
<identifier type="local">MAP20200034445</identifier>
<part>
<text>04/10/2021 Volumen 24 Número 68 - octubre 2021 , p. 1-20</text>
</part>
</relatedItem>
<recordInfo>
<recordContentSource authority="marcorg">MAP</recordContentSource>
<recordCreationDate encoding="marc">211027</recordCreationDate>
<recordChangeDate encoding="iso8601">20220911185813.0</recordChangeDate>
<recordIdentifier source="MAP">MAP20210031229</recordIdentifier>
<languageOfCataloging>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</languageOfCataloging>
</recordInfo>
</mods>
</modsCollection>