Cyber risk management in the US banking and insurance industry : A textual and empirical analysis of determinants and value
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20220023481</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20220914102408.0</controlfield>
<controlfield tag="008">220914e20220905usa|||p |0|||b|eng d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">7</subfield>
</datafield>
<datafield tag="100" ind1="1" ind2=" ">
<subfield code="0">MAPA20220008181</subfield>
<subfield code="a">Nadine Gatzert, Madeline Schubert</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Cyber risk management in the US banking and insurance industry</subfield>
<subfield code="b">: A textual and empirical analysis of determinants and value</subfield>
<subfield code="c">Madeline Schubert Nadine Gatzert</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">In this paper, we first construct a cyber risk consciousness score using a text mining algorithm, applied to annual reports of large- and mid-cap US banks and insurers from 2011 to 2018. We next categorize the firms' cyber risk management based on keywords to study determinants and value-relevance. Our results show an increasing cyber risk consciousness, regardless of the industry. In addition, for the entire sample we find that firms belonging to the banking industry, with a higher cyber risk consciousness score and a higher general risk awareness are more likely to implement cyber risk management, which also holds for both industries separately. We find the opposite in the case of profitable firms for the entire sample and the insurer subsample. Finally, we observe a significant positive relationship between cyber risk management and firm value measured by Tobin's Q for the entire sample and the subsamples of banks and insurers.
</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080591182</subfield>
<subfield code="a">Gerencia de riesgos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20160007633</subfield>
<subfield code="a">Ciberriesgos</subfield>
</datafield>
<datafield tag="651" ind1=" " ind2="1">
<subfield code="0">MAPA20080638337</subfield>
<subfield code="a">Estados Unidos</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077000727</subfield>
<subfield code="g">05/09/2022 Volumen 89 Número 3 - septiembre 2022 , p. 725-763</subfield>
<subfield code="x">0022-4367</subfield>
<subfield code="t">The Journal of risk and insurance</subfield>
<subfield code="d">Nueva York : The American Risk and Insurance Association, 1964-</subfield>
</datafield>
</record>
</collection>