Búsqueda

Robust mean-variance hedging of longevity risk

Recurso electrónico / Electronic resource
Registro MARC
Tag12Valor
LDR  00000cab a2200000 4500
001  MAP20170015123
003  MAP
005  20170602100225.0
008  170518e20170403esp|||p |0|||b|spa d
040  ‎$a‎MAP‎$b‎spa‎$d‎MAP
084  ‎$a‎7
100  ‎$0‎MAPA20170005766‎$a‎Li, Hong
24510‎$a‎Robust mean-variance hedging of longevity risk‎$c‎Hong Li, Anja De Waegenaere, Bertrand Melenberg
520  ‎$a‎Parameter uncertainty and model misspecification can have a significant impact on the performance of hedging strategies for longevity risk. To mitigate this lack of robustness,wepropose an approach in which the optimal hedge is determined by optimizing the worst-case value of the objective function with respect to a set of plausible probability distributions. In the empirical analysis, we consider an insurer who hedges longevity risk using a longevity bond, and we compare the worst-case (robust) optimal hedges with the classical optimal hedges in which parameter uncertainty and model misspecification are ignored. We find that unless the risk premium on the bond is close to zero, the robust optimal hedge is significantly less sensitive to variations in the underlying probability distribution. Moreover, the robust optimal hedge on average outperforms the nominal optimal hedge unless the probability distribution used by the nominal hedger is close to the true distribution.
650 4‎$0‎MAPA20080591182‎$a‎Gerencia de riesgos
650 4‎$0‎MAPA20080555016‎$a‎Longevidad
650 4‎$0‎MAPA20080616106‎$a‎Cálculo de probabilidades
7730 ‎$w‎MAP20077000727‎$t‎The Journal of risk and insurance‎$d‎Nueva York : The American Risk and Insurance Association, 1964-‎$x‎0022-4367‎$g‎03/04/2017 Volumen 84 Número S1 - abril 2017 , p. 459-475