Search

Optimal reinsurance subject to Vajda condition

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20130027111</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20130905143821.0</controlfield>
    <controlfield tag="008">130905e20130701esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1=" " ind2=" ">
      <subfield code="0">MAPA20110012106</subfield>
      <subfield code="a">Chi, Yichun</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Optimal reinsurance subject to Vajda condition </subfield>
      <subfield code="c">Yichun Chi, Chengguo Weng</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">In this paper, we study optimal reinsurance design by minimizing the risk-adjusted value of an insurer¿s liability, where the valuation is carried out by a cost-of-capital approach based either on the value at risk or the conditional value at risk. To prevent moral hazard and to be consistent with the spirit of reinsurance, we follow Vajda (1962) and assume that both the insurer¿s retained loss and the proportion paid by a reinsurer are increasing in indemnity. We analyze the optimal solutions for a wide class of reinsurance premium principles which satisfy three axioms (law invariance, risk loading and preserving convex order) and encompass ten of the eleven widely used premium principles listed in Young (2004). Our results show that the optimal ceded loss functions are in the form of three interconnected line segments. Further simplified forms of the optimal reinsurance are obtained for the premium principles under an additional mild constraint. Finally, to illustrate the applicability of our results, we derive the optimal reinsurance explicitly for both the expected value principle and Wang¿s principle.</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077100574</subfield>
      <subfield code="t">Insurance : mathematics and economics</subfield>
      <subfield code="d">Oxford : Elsevier, 1990-</subfield>
      <subfield code="x">0167-6687</subfield>
      <subfield code="g">01/07/2013 Volumen 53 Número 1 - julio 2013 </subfield>
    </datafield>
    <datafield tag="856" ind1=" " ind2=" ">
      <subfield code="y">MÁS INFORMACIÓN</subfield>
      <subfield code="u">mailto:centrodocumentacion@fundacionmapfre.org?subject=Consulta%20de%20una%20publicaci%C3%B3n%20&body=Necesito%20m%C3%A1s%20informaci%C3%B3n%20sobre%20este%20documento%3A%20%0A%0A%5Banote%20aqu%C3%AD%20el%20titulo%20completo%20del%20documento%20del%20que%20desea%20informaci%C3%B3n%20y%20nos%20pondremos%20en%20contacto%20con%20usted%5D%20%0A%0AGracias%20%0A</subfield>
    </datafield>
  </record>
</collection>