Search

Optimal bond portfolios with fixed time to maturity

<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-8.xsd">
<mods version="3.8">
<titleInfo>
<title>Optimal bond portfolios with fixed time to maturity</title>
</titleInfo>
<name type="personal" usage="primary" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20130014104">
<namePart>Andersson, Patrik</namePart>
<nameIdentifier>MAPA20130014104</nameIdentifier>
</name>
<typeOfResource>text</typeOfResource>
<genre authority="marcgt">periodical</genre>
<originInfo>
<place>
<placeTerm type="code" authority="marccountry">esp</placeTerm>
</place>
<dateIssued encoding="marc">2013</dateIssued>
<issuance>serial</issuance>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<form authority="marcform">print</form>
</physicalDescription>
<abstract displayLabel="Summary">We study interest rate models where the term structure is given by an affine relation and in particular where the driving stochastic processes are so-called generalized OrnsteinUhlenbeck processes. For many institutional investors it is natural to consider investment in bonds where the time to maturity of the bonds in the portfolio is kept fixed over time. We show that the return and variance of such a portfolio of bonds which are continuously rolled over, also called rolling horizon bonds, can be expressed using the cumulant generating functions of the background driving Lévy processes associated with the OU processes. This allows us to calculate the efficient meanvariance portfolio. We exemplify the results by a case study on euro swap rates. We also show that if the short rate, in a risk-neutral setting, is given by a linear combination of generalized OU processes, the implied term structure can be expressed in terms of the cumulant generating functions. This makes it possible to quite easily see what kind of term structures can be generated with a particular short rate dynamics.</abstract>
<note type="statement of responsibility">Patrik Andersson, Andreas N. Lagerås</note>
<classification authority="">6</classification>
<location>
<url displayLabel="MÁS INFORMACIÓN" usage="primary display">mailto:centrodocumentacion@fundacionmapfre.org?subject=Consulta%20de%20una%20publicaci%C3%B3n%20&body=Necesito%20m%C3%A1s%20informaci%C3%B3n%20sobre%20este%20documento%3A%20%0A%0A%5Banote%20aqu%C3%AD%20el%20titulo%20completo%20del%20documento%20del%20que%20desea%20informaci%C3%B3n%20y%20nos%20pondremos%20en%20contacto%20con%20usted%5D%20%0A%0AGracias%20%0A</url>
</location>
<relatedItem type="host">
<titleInfo>
<title>Insurance : mathematics and economics</title>
</titleInfo>
<originInfo>
<publisher>Oxford : Elsevier, 1990-</publisher>
</originInfo>
<identifier type="issn">0167-6687</identifier>
<identifier type="local">MAP20077100574</identifier>
<part>
<text>02/09/2013 Volumen 53 Número 2 - septiembre 2013 </text>
</part>
</relatedItem>
<recordInfo>
<recordContentSource authority="marcorg">MAP</recordContentSource>
<recordCreationDate encoding="marc">131008</recordCreationDate>
<recordChangeDate encoding="iso8601">20131010175426.0</recordChangeDate>
<recordIdentifier source="MAP">MAP20130032962</recordIdentifier>
<languageOfCataloging>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</languageOfCataloging>
</recordInfo>
</mods>
</modsCollection>