Search

Conditional least squares and copulae in claims reserving for a single line of business

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20140023738</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20140709121737.0</controlfield>
    <controlfield tag="008">140704e20140505esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20140011247</subfield>
      <subfield code="a">Pesta, Michal</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Conditional least squares and copulae in claims reserving for a single line of business</subfield>
      <subfield code="c">Michal Pesta, Ostap Okhrin</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">One of the main goals in non-life insurance is to estimate the claims reserve distribution. A generalized time series model, that allows for modeling the conditional mean and variance of the claim amounts, is proposed for the claims development. On contrary to the classical stochastic reserving techniques, the number of model parameters does not depend on the number of development periods, which leads to a more precise forecasting. Moreover, the time series innovations for the consecutive claims are not considered to be independent anymore. Conditional least squares are used to estimate model parameters and consistency of these estimates is proved. The copula approach is used for modeling the dependence structure, which improves the precision of the reserve distribution estimate as well. Real data examples are provided as an illustration of the potential benefits of the presented approach.</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077100574</subfield>
      <subfield code="t">Insurance : mathematics and economics</subfield>
      <subfield code="d">Oxford : Elsevier, 1990-</subfield>
      <subfield code="x">0167-6687</subfield>
      <subfield code="g">05/05/2014 Volumen 56 Número 1 - mayo 2014 </subfield>
    </datafield>
    <datafield tag="856" ind1=" " ind2=" ">
      <subfield code="y">MÁS INFORMACIÓN</subfield>
      <subfield code="u">mailto:centrodocumentacion@fundacionmapfre.org?subject=Consulta%20de%20una%20publicaci%C3%B3n%20&body=Necesito%20m%C3%A1s%20informaci%C3%B3n%20sobre%20este%20documento%3A%20%0A%0A%5Banote%20aqu%C3%AD%20el%20titulo%20completo%20del%20documento%20del%20que%20desea%20informaci%C3%B3n%20y%20nos%20pondremos%20en%20contacto%20con%20usted%5D%20%0A%0AGracias%20%0A</subfield>
    </datafield>
  </record>
</collection>