Search

Optimization of cascade-resilient electrical infrastructures and its validation by power flow modeling

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20150023513</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20150707153726.0</controlfield>
    <controlfield tag="008">150625e20150406esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">7</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20150012760</subfield>
      <subfield code="a">Fang, Yiping</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Optimization of cascade-resilient electrical infrastructures and its validation by power flow modeling</subfield>
      <subfield code="c">Yiping Fang, Nicola Pedroni, Enrico Zio</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">Large-scale outages on real-world critical infrastructures, although infrequent, are increasingly disastrous to our society. In this article, we are primarily concerned with power transmission networks and we consider the problem of allocation of generation to distributors by rewiring links under the objectives of maximizing network resilience to cascading failure and minimizing investment costs. The combinatorial multiobjective optimization is carried out by a nondominated sorting binary differential evolution (NSBDE) algorithm. For each generatorsdistributors connection pattern considered in the NSBDE search, a computationally cheap, topological model of failure cascading in a complex network (named the Motter-Lai [ML] model) is used to simulate and quantify network resilience to cascading failures initiated by targeted attacks. The results on the 400 kV French power transmission network case study show that the proposed method allows us to identify optimal patterns of generatorsdistributors connection that improve cascading resilience at an acceptable cost. To verify the realistic character of the results obtained by the NSBDE with the embedded ML topological model, a more realistic but also more computationally expensive model of cascading failures is adopted, based on optimal power flow (namely, the ORNL-Pserc-Alaska) model). The consistent results between the two models provide impetus for the use of topological, complex network theory models for analysis and optimization of large infrastructures against cascading failure with the advantages of simplicity, scalability, and low computational cost.</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000345</subfield>
      <subfield code="t">Risk analysis : an international journal</subfield>
      <subfield code="d">McLean, Virginia : Society for Risk Analysis, 1987-2015</subfield>
      <subfield code="x">0272-4332</subfield>
      <subfield code="g">06/04/2015 Volumen 35 Número 4 - abril 2015 </subfield>
    </datafield>
    <datafield tag="856" ind1=" " ind2=" ">
      <subfield code="y">MÁS INFORMACIÓN</subfield>
      <subfield code="u">mailto:centrodocumentacion@fundacionmapfre.org?subject=Consulta%20de%20una%20publicaci%C3%B3n%20&body=Necesito%20m%C3%A1s%20informaci%C3%B3n%20sobre%20este%20documento%3A%20%0A%0A%5Banote%20aqu%C3%AD%20el%20titulo%20completo%20del%20documento%20del%20que%20desea%20informaci%C3%B3n%20y%20nos%20pondremos%20en%20contacto%20con%20usted%5D%20%0A%0AGracias%20%0A</subfield>
    </datafield>
  </record>
</collection>