Search

Pricing annuity guarantees under a double regime-switching model

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20150023674</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20150707153724.0</controlfield>
    <controlfield tag="008">150626e20150504esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="245" ind1="0" ind2="0">
      <subfield code="a">Pricing annuity guarantees under a double regime-switching model</subfield>
      <subfield code="c">Kun Fan...[et.al]</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">This paper is concerned with the valuation of equity-linked annuities with mortality risk under a double regime-switching model, which provides a way to endogenously determine the regime-switching risk. The model parameters and the reference investment fund price level are modulated by a continuous-time, finite-time, observable Markov chain. In particular, the risk-free interest rate, the appreciation rate, the volatility and the martingale describing the jump component of the reference investment fund are related to the modulating Markov chain. Two approaches, namely, the regime-switching Esscher transform and the minimal martingale measure, are used to select pricing kernels for the fair valuation. Analytical pricing formulas for the embedded options underlying these products are derived using the inverse Fourier transform. The fast Fourier transform approach is then used to numerically evaluate the embedded options. Numerical examples are provided to illustrate our approach.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080602437</subfield>
      <subfield code="a">Matemática del seguro</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080579258</subfield>
      <subfield code="a">Cálculo actuarial</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077100574</subfield>
      <subfield code="t">Insurance : mathematics and economics</subfield>
      <subfield code="d">Oxford : Elsevier, 1990-</subfield>
      <subfield code="x">0167-6687</subfield>
      <subfield code="g">04/05/2015 Volumen 62 - mayo 2015 , p. 62-78</subfield>
    </datafield>
  </record>
</collection>