Insured loss inflation : how natural catastrophes affect reconstruction costs

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="" xmlns:xsi="" xsi:schemaLocation="">
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20170028765</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20170907114102.0</controlfield>
    <controlfield tag="008">170904e20170904usa|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">328.1</subfield>
    <datafield tag="100" ind1=" " ind2=" ">
      <subfield code="0">MAPA20170011422</subfield>
      <subfield code="a">Dohrmann, David</subfield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Insured loss inflation</subfield>
      <subfield code="b">: how natural catastrophes affect reconstruction costs</subfield>
      <subfield code="c">David Döhrmann, Marc Gürtler, Martin Hibbeln</subfield>
    <datafield tag="300" ind1=" " ind2=" ">
      <subfield code="a">29 p.</subfield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">In the aftermath of a natural catastrophe, there is increased demand for skilled reconstruction labor, which leads to significant increases in reconstruction labor wages and hence insured losses. Such inflation effects are known as "Demand Surge" effects. It is important for insurance companies to properly account for these effects when calculating insurance premiums and determining economic capital. We propose an approach to quantifying the Demand Surge effect and present an econometric model for the effect that is based on 192 catastrophe events in the United States. Our model explains more than 75 percent of the variance of the Demand Surge effect and is thus able to identify the key drivers of the phenomenon.</subfield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080551346</subfield>
      <subfield code="a">Inflación</subfield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080600204</subfield>
      <subfield code="a">Catástrofes naturales</subfield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080590567</subfield>
      <subfield code="a">Empresas de seguros</subfield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080581886</subfield>
      <subfield code="a">Primas de seguros</subfield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20130006123</subfield>
      <subfield code="a">Capital económico</subfield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080602659</subfield>
      <subfield code="a">Modelos econométricos</subfield>
    <datafield tag="700" ind1=" " ind2=" ">
      <subfield code="0">MAPA20160011463</subfield>
      <subfield code="a">Gürtler, Marc</subfield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20160011524</subfield>
      <subfield code="a">Hibbeln, Martin</subfield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000727</subfield>
      <subfield code="t">The Journal of risk and insurance</subfield>
      <subfield code="d">Nueva York : The American Risk and Insurance Association, 1964-</subfield>
      <subfield code="x">0022-4367</subfield>
      <subfield code="g">04/09/2017 Volumen 84 Número 3 - septiembre 2017 , p. 851-879</subfield>