Stochastic loss reserving : a new perspective from a Dirichlet model

<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-7.xsd">
<mods version="3.7">
<titleInfo>
<title>Stochastic loss reserving</title>
<subTitle>: a new perspective from a Dirichlet model</subTitle>
</titleInfo>
<name type="personal" usage="primary">
<namePart>Sriram, Karthik</namePart>
</name>
<name type="personal">
<namePart>Shi, Peng</namePart>
</name>
<typeOfResource>text</typeOfResource>
<genre authority="marcgt">periodical</genre>
<originInfo>
<place>
<placeTerm type="code" authority="marccountry">usa</placeTerm>
</place>
<dateIssued encoding="marc">20210301</dateIssued>
<issuance>continuing</issuance>
<frequency authority="marcfrequency"/>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<form authority="marcform">print</form>
</physicalDescription>
<abstract>Forecasting the outstanding claim liabilities to set adequate reserves is critical for a nonlife insurer's solvency. ChainLadder and BornhuetterFerguson are two prominent actuarial approaches used for this task. The selection between the two approaches is often ad hoc due to different underlying assumptions. We introduce a Dirichlet model that provides a common statistical framework for the two approaches, with some appealing properties. Depending on the type of information available, the model inference naturally leads to either ChainLadder or BornhuetterFerguson prediction. Using claims data on Worker's compensation insurance from several U.S. insurers, we discuss both frequentist and Bayesian inference.</abstract>
<note type="statement of responsibility">Karthik Sriram, Peng Shi</note>
<subject>
<topic>Modelo estocástico</topic>
</subject>
<subject>
<topic>Empresas de seguros</topic>
</subject>
<subject>
<topic>Seguros no vida</topic>
</subject>
<subject>
<topic>Reclamaciones</topic>
</subject>
<classification authority="">6</classification>
<relatedItem type="host">
<titleInfo>
<title>The Journal of risk and insurance</title>
</titleInfo>
<originInfo>
<publisher>Nueva York : The American Risk and Insurance Association, 1964-</publisher>
</originInfo>
<identifier type="issn">0022-4367</identifier>
<identifier type="local">MAP20077000727</identifier>
<part>
<text>01/03/2021 Volumen 88 Número 1 - marzo 2021 , p. 195-230</text>
</part>
</relatedItem>
<recordInfo>
<recordContentSource authority="marcorg">MAP</recordContentSource>
<recordCreationDate encoding="marc">210219</recordCreationDate>
<recordChangeDate encoding="iso8601">20210302165657.0</recordChangeDate>
<recordIdentifier source="MAP">MAP20210005695</recordIdentifier>
<languageOfCataloging>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</languageOfCataloging>
</recordInfo>
</mods>
</modsCollection>