The efficiency of voluntary risk classification in insurance markets

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20210022654</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20210719090543.0</controlfield>
<controlfield tag="008">210714e20210911esp|||p |0|||b|spa d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">7</subfield>
</datafield>
<datafield tag="100" ind1="1" ind2=" ">
<subfield code="0">MAPA20080189150</subfield>
<subfield code="a">Crocker, Keith J.</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">The efficiency of voluntary risk classification in insurance markets</subfield>
<subfield code="c">Keith J. Crocker, Nan Zhu</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">It has been established that categorical discrimination based on observable characteristics such as gender, age, or ethnicity enhances efficiency. We consider a different form of risk classification when there exists a costless yet imperfectly informative test of risk type, with the test outcome unknown to the agents ex ante. We show that a voluntary risk classification in which agents are given the option to take the test always increases efficiency compared with no risk classification. Moreover, voluntary risk classification also Pareto dominates a regime of compulsory risk classification in which all agents are required to take the test.</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20210011108</subfield>
<subfield code="a">Riesgo</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080548575</subfield>
<subfield code="a">Pérdidas</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20120026414</subfield>
<subfield code="a">Eficiencia operacional</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080586294</subfield>
<subfield code="a">Mercado de seguros</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080579258</subfield>
<subfield code="a">Cálculo actuarial</subfield>
</datafield>
<datafield tag="700" ind1=" " ind2=" ">
<subfield code="0">MAPA20110028862</subfield>
<subfield code="a">Zhu, Nan</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077000727</subfield>
<subfield code="t">The Journal of risk and insurance</subfield>
<subfield code="d">Nueva York : The American Risk and Insurance Association, 1964-</subfield>
<subfield code="x">0022-4367</subfield>
<subfield code="g">01/06/2021 Volumen 88 Número 2 - junio 2021 , p. 325-350</subfield>
</datafield>
</record>
</collection>