Risk sharing under the dominant peer-to-peer property and casualty insurance business models

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20210024290</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20210723085248.0</controlfield>
<controlfield tag="008">210722e20210506esp|||p |0|||b|spa d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">32</subfield>
<datafield tag="100" ind1="1" ind2=" ">
<subfield code="0">MAPA20080096434</subfield>
<subfield code="a">Denuit, Michel</subfield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Risk sharing under the dominant peer-to-peer property and casualty insurance business models</subfield>
<subfield code="c">Michel Denuit, Christian Y. Robert</subfield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">This paper purposes to formalize the three business models dominating peer-to-peer (P2P) property and casualty insurance: the self-governing model, the broker model, and the carrier model. The former one develops outside the insurance market whereas the latter ones may originate from the insurance industry, by partnering with an existing company or by issuing a new generation of participating insurance policies where part of the risk is shared within a community and higher losses, exceeding the community's risk-bearing capacity are covered by an insurance or reinsurance company. The present paper proposes an actuarial modeling based on conditional mean risk sharing, to support the development of this new P2P insurance offer under each of the three business models. In addition, several specific questions are also addressed in the self-governing model. Considering an economic agent who has to select the optimal pool for a risk to be shared with other participants, it is shown that uniform comparison of the Lorenz or concentration curves associated to the respective total losses of the pools under consideration allows the agent to decide which pool is preferable.</subfield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080586294</subfield>
<subfield code="a">Mercado de seguros</subfield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080598969</subfield>
<subfield code="a">Seguro de accidentes</subfield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080545017</subfield>
<subfield code="a">Pólizas</subfield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080581978</subfield>
<subfield code="a">Property-casualty</subfield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20110024864</subfield>
<subfield code="a">Modelos de negocio</subfield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077001748</subfield>
<subfield code="t">Risk management & insurance review</subfield>
<subfield code="d">Malden, MA : The American Risk and Insurance Association by Blackwell Publishing, 1999-</subfield>
<subfield code="x">1098-1616</subfield>
<subfield code="g">03/05/2021 Tomo 24 Número 2 - 2021 , p. 181-205</subfield>