Search

Identifying and measuring developments in artificial intelligence : making the impossible possible

<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-8.xsd">
<mods version="3.8">
<titleInfo>
<title>Identifying and measuring developments in artificial intelligence</title>
<subTitle>: making the impossible possible</subTitle>
</titleInfo>
<name type="personal" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20210033995">
<namePart>Baruffaldi, Stefano</namePart>
<nameIdentifier>MAPA20210033995</nameIdentifier>
</name>
<name type="corporate" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080432676">
<namePart>OECD</namePart>
<nameIdentifier>MAPA20080432676</nameIdentifier>
</name>
<typeOfResource>text</typeOfResource>
<originInfo>
<place>
<placeTerm type="code" authority="marccountry">fra</placeTerm>
</place>
<issuance>monographic</issuance>
<place>
<placeTerm type="text">Paris</placeTerm>
</place>
<publisher>OECD</publisher>
<dateIssued>2021</dateIssued>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<form authority="marcform">print</form>
<extent>68 p.</extent>
</physicalDescription>
<abstract displayLabel="Summary">This paper identifies and measures developments in science, algorithms and technologies related to artificial intelligence (AI). Using information from scientific publications, open source software (OSS) and patents, it finds a marked increase in AI-related developments over recent years. Since 2015, AI-related publications have increased by 23% per year; from 2014 to 2018, AI-related OSS contributions grew at a rate three times greater than other OSS contributions; and AI-related inventions comprised, on average, more than 2.3% of IP5 patent families in 2017. China's growing role in the AI space also emerges. The analysis relies on a three-pronged approach based on established bibliometric and patent-based methods, and machine learning (ML) implemented on purposely collected OSS data.</abstract>
<note type="statement of responsibility">Stefano Baruffaldi...[et.al]</note>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080611200">
<topic>Inteligencia artificial</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080586546">
<topic>Nuevas tecnologías</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20170006503">
<topic>Transformación digital</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080567057">
<topic>Publicaciones</topic>
</subject>
<classification authority="">922.134</classification>
<relatedItem type="series">
<titleInfo>
<title>OECD Science, Technology and Industry Working Papers</title>
</titleInfo>
</relatedItem>
<recordInfo>
<recordContentSource authority="marcorg">MAP</recordContentSource>
<recordCreationDate encoding="marc">211020</recordCreationDate>
<recordChangeDate encoding="iso8601">20230321113805.0</recordChangeDate>
<recordIdentifier source="MAP">MAP20210030147</recordIdentifier>
<languageOfCataloging>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</languageOfCataloging>
</recordInfo>
</mods>
</modsCollection>