Improving automobile insurance claims frequency prediction with telematics car driving data
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<rdf:Description>
<dc:date>2020-05-09</dc:date>
<dc:description xml:lang="es">Sumario: Novel navigation applications provide a driving behavior score for each finished trip to promote safe driving, which is mainly based on experts' domain knowledge. In this paper, with automobile insurance claims data and associated telematics car driving data, we propose a supervised driving risk scoring neural network model. This one-dimensional convolutional neural network takes time series of individual car driving trips as input and returns a risk score in the unit range of (0,1). By incorporating credibility average risk score of each driver, the classical Poisson generalized linear model for automobile insurance claims frequency prediction can be improved significantly. Hence, compared with non-telematics-based insurers, telematics-based insurers can discover more heterogeneity in their portfolio and attract safer drivers with premiums discounts.
</dc:description>
<dc:identifier>https://documentacion.fundacionmapfre.org/documentacion/publico/es/bib/179726.do</dc:identifier>
<dc:language>spa</dc:language>
<dc:rights xml:lang="es">InC - http://rightsstatements.org/vocab/InC/1.0/</dc:rights>
<dc:subject xml:lang="es">Seguro de automóviles</dc:subject>
<dc:subject xml:lang="es">Telemática</dc:subject>
<dc:subject xml:lang="es">Conducción automovilística</dc:subject>
<dc:type xml:lang="es">Artículos y capítulos</dc:type>
<dc:title xml:lang="es">Improving automobile insurance claims frequency prediction with telematics car driving data</dc:title>
<dc:relation xml:lang="es">En: Astin bulletin. - Belgium : ASTIN and AFIR Sections of the International Actuarial Association = ISSN 0515-0361. - 09/05/2022 Volumen 52 Número 2 - mayo 2022 , p. 363-391</dc:relation>
</rdf:Description>
</rdf:RDF>