Search

AI could transform catastrophe modelling of secondary perils

<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-8.xsd">
<mods version="3.8">
<titleInfo>
<title>AI could transform catastrophe modelling of secondary perils</title>
</titleInfo>
<name type="personal" usage="primary" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20250002951">
<namePart>Geer, Joshua </namePart>
<nameIdentifier>MAPA20250002951</nameIdentifier>
</name>
<typeOfResource>text</typeOfResource>
<genre authority="marcgt">periodical</genre>
<originInfo>
<place>
<placeTerm type="code" authority="marccountry">gbr</placeTerm>
</place>
<dateIssued encoding="marc">2025</dateIssued>
<issuance>serial</issuance>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<form authority="marcform">print</form>
</physicalDescription>
<abstract displayLabel="Summary">Artificial intelligence (AI) and machine learning (ML) are poised to significantly enhance catastrophe modelling for secondary perils, such as severe convective storms, derechos, tornadoes, and wildfires, by leveraging vast amounts of high-resolution atmospheric data. Karen Clark, founder of Karen Clark & Company, emphasized during the Rendez-Vous de Septembre in Monte Carlo that AI and ML can improve forecasting accuracy for events traditionally difficult to predict, like derechos and tornado touchdowns, and can also help model wildfire behavior by analyzing wind patterns that influence fire spread</abstract>
<note type="statement of responsibility">Joshua Geer</note>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080600204">
<topic>Catástrofes naturales</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080611200">
<topic>Inteligencia artificial</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080629755">
<topic>Seguro de riesgos extraordinarios</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20170005476">
<topic>Machine learning</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080592059">
<topic>Modelos predictivos</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080608392">
<topic>Riesgos meteorológicos</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080551292">
<topic>Incendios</topic>
</subject>
<classification authority="">328.1</classification>
<location>
<url displayLabel="electronic resource" usage="primary display">https://www.insuranceerm.com/news-comment/ai-could-transform-catastrophe-modelling-of-secondary-perils.html</url>
</location>
<relatedItem type="host">
<titleInfo>
<title>Insurance ERM: the online resource for enterprise risk management</title>
</titleInfo>
<part>
<text>16 September 2025 ; 1 p.</text>
</part>
</relatedItem>
<recordInfo>
<recordContentSource authority="marcorg">MAP</recordContentSource>
<recordCreationDate encoding="marc">250716</recordCreationDate>
<recordChangeDate encoding="iso8601">20251010095008.0</recordChangeDate>
<recordIdentifier source="MAP">MAP20250016200</recordIdentifier>
<languageOfCataloging>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</languageOfCataloging>
</recordInfo>
</mods>
</modsCollection>