Model selection and averaging in financial risk management
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20130039442</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20131209110001.0</controlfield>
<controlfield tag="008">131122e20130902esp|||p |0|||b|spa d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="100" ind1="1" ind2=" ">
<subfield code="0">MAPA20130016856</subfield>
<subfield code="a">Hartman, Brian M.</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Model selection and averaging in financial risk management</subfield>
<subfield code="c">Brian M. Hartman, Chris Groendyke</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">Simulated asset returns are used in many areas of actuarial science. For example, life insurers use them to price annuities, life insurance, and investment guarantees. The quality of those simulations has come under increased scrutiny during the current financial crisis. When simulating the asset price process, properly choosing which model or models to use, and accounting for the uncertainty in that choice, is essential. We investigate how best to choose a model from a flexible set of models. In our regime-switching models the individual regimes are not constrained to be from the same distributional family. Even with larger sample sizes, the standard model-selection methods (AIC, BIC, and DIC) incorrectly identify the models far too often. Rather than trying to identify the best model and limiting the simulation to a single distribution, we show that the simulations can be made more realistic by explicitly modeling the uncertainty in the model-selection process. Specifically, we consider a parallel model-selection method that provides the posterior probabilities of each model being the best, enabling model averaging and providing deeper insights into the relationships between the models. The value of the method is demonstrated through a simulation study, and the method is then applied to total return data from the S&P 500.</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080599126</subfield>
<subfield code="a">Simulación económica</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080591182</subfield>
<subfield code="a">Gerencia de riesgos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080592011</subfield>
<subfield code="a">Modelos actuariales</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080579258</subfield>
<subfield code="a">Cálculo actuarial</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080621391</subfield>
<subfield code="a">Financiación de los riesgos</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20130017457</subfield>
<subfield code="a">Groendyke, Chris</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077000239</subfield>
<subfield code="t">North American actuarial journal</subfield>
<subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
<subfield code="x">1092-0277</subfield>
<subfield code="g">02/09/2013 Tomo 17 Número 3 - 2013 , p. 216-228</subfield>
</datafield>
</record>
</collection>