MAP20140025275Neves, CésarForecasting surrender rates using elliptical copulas and financial variables / César Neves, Cristiano Fernandes, Eduardo MeloSumario: A multistage stochastic model to forecast surrender rates for life insurance and pension plans is proposed. Surrender rates are forecasted by means of Monte Carlo simulation after a sequence of GLM, ARMA-GARCH, and copula fitting is executed. The model is illustrated by applying it to age-specific time series of surrender rates derived from pension plans with annuity payments of a Brazilian insurer. In the GLM process, the only macroeconomic variable used as an explanatory variable is the Brazilian real short-term interest rate. The advantage of such a variable is that we can take future market expectation through the current term structure of interest rates. The GLM residuals of each age/gender group are then modeled by ARMA-GARCH processes to generate i.i.d. residuals. The dependence among these residuals is then modeled by multivariate Gaussian and Student's t copulas. To produce a conditional forecast on a stock market index, in our application we used the residuals of an ARMA-GARCH model fitted to the Brazilian stock market index (Ibovespa) returns, which generates one of the marginal distributions used in the dependence modeling through copulas. This strategy is adopted to explain the high and uncommon surrender rates observed during the recent economic crisis. After applying known simulation methods for elliptical copulas, we proceeded backwards to obtain the forecasted distributions of surrender rates by application, in the sequel, of ARMA-GARCH and GLM models. Additionally, our approach produced an algorithm able to simulate multivariate elliptical copulas conditioned on a marginal distribution. Using this algorithm, surrender rates can be simulated conditioned on stock index residuals (in our case, the residuals of the Ibovespa returns), which allows insurers and pension funds to simulate future surrender rates assuming a financial stress scenario with no need to predict the stock market indexEn: North American actuarial journal. - Schaumburg : Society of Actuaries, 1997- = ISSN 1092-0277. - 02/06/2014 Tomo 18 Número 2 - 2014 I. Título.