Búsqueda

Extreme value analysis of the Haezendonck-Goovaerts risk measure with a general Young function

<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-8.xsd">
<mods version="3.8">
<titleInfo>
<title>Extreme value analysis of the Haezendonck-Goovaerts risk measure with a general Young function</title>
</titleInfo>
<name type="personal" usage="primary" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080650421">
<namePart>Tang, Qihe</namePart>
<nameIdentifier>MAPA20080650421</nameIdentifier>
</name>
<typeOfResource>text</typeOfResource>
<genre authority="marcgt">periodical</genre>
<originInfo>
<place>
<placeTerm type="code" authority="marccountry">esp</placeTerm>
</place>
<dateIssued encoding="marc">2014</dateIssued>
<issuance>serial</issuance>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</language>
<physicalDescription>
<form authority="marcform">print</form>
</physicalDescription>
<abstract displayLabel="Summary">For a risk variable X and a normalized Young function f(·), the HaezendonckGoovaerts risk measure for X at level q?(0,1) is defined as Hq[X]=infx?R(x+h), where h solves the equation View the MathML source if Pr(X>x)>0 or is 0 otherwise. In a recent work, we implemented an asymptotic analysis for Hq[X] with a power Young function for the Fréchet, Weibull and Gumbel cases separately. A key point of the implementation was that h can be explicitly solved for fixed x and q, which gave rise to the possibility to express Hq[X] in terms of x and q. For a general Young function, however, this does not work anymore and the problem becomes a lot harder. In the present paper, we extend the asymptotic analysis for Hq[X] to the case with a general Young function and we establish a unified approach for the three extreme value cases. In doing so, we overcome several technical difficulties mainly due to the intricate relationship between the working variables x, h and q.</abstract>
<note type="statement of responsibility">Qihe Tang, Fan Yang</note>
<classification authority="">6</classification>
<location>
<url displayLabel="MÁS INFORMACIÓN" usage="primary display">mailto:centrodocumentacion@fundacionmapfre.org?subject=Consulta%20de%20una%20publicaci%C3%B3n%20&body=Necesito%20m%C3%A1s%20informaci%C3%B3n%20sobre%20este%20documento%3A%20%0A%0A%5Banote%20aqu%C3%AD%20el%20titulo%20completo%20del%20documento%20del%20que%20desea%20informaci%C3%B3n%20y%20nos%20pondremos%20en%20contacto%20con%20usted%5D%20%0A%0AGracias%20%0A</url>
</location>
<relatedItem type="host">
<titleInfo>
<title>Insurance : mathematics and economics</title>
</titleInfo>
<originInfo>
<publisher>Oxford : Elsevier, 1990-</publisher>
</originInfo>
<identifier type="issn">0167-6687</identifier>
<identifier type="local">MAP20077100574</identifier>
<part>
<text>03/11/2014 Volumen 59 Número 1 - noviembre 2014 </text>
</part>
</relatedItem>
<recordInfo>
<recordContentSource authority="marcorg">MAP</recordContentSource>
<recordCreationDate encoding="marc">150113</recordCreationDate>
<recordChangeDate encoding="iso8601">20150122171256.0</recordChangeDate>
<recordIdentifier source="MAP">MAP20150002457</recordIdentifier>
<languageOfCataloging>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</languageOfCataloging>
</recordInfo>
</mods>
</modsCollection>