Búsqueda

Territorial risk classification using spatially dependent frequency-severity models

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20170019800</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20170621141757.0</controlfield>
    <controlfield tag="008">170614e20170501esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1=" " ind2=" ">
      <subfield code="0">MAPA20100048726</subfield>
      <subfield code="a">Shi, Peng</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Territorial risk classification using spatially dependent frequency-severity models</subfield>
      <subfield code="c">Peng Shi, Kun Shi</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">In non-life insurance, territory-based risk classification is useful for various insurance operations including marketing, underwriting, ratemaking, etc. This paper proposes a spatially dependent frequency-severity modeling framework to produce territorial risk scores. The framework applies to the aggregated insurance claims where the frequency and severity components examine the occurrence rate and average size of insurance claims in each geographic unit, respectively. We employ the bivariate conditional autoregressive models to accommodate the spatial dependency in the frequency and severity components, as well as the cross-sectional association between the two components. Using a town-level claims data of automobile insurance in Massachusetts, we demonstrate applications of the model outputterritorial risk scoresin ratemaking and market segmentation.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080607487</subfield>
      <subfield code="a">Operaciones de seguros</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080613327</subfield>
      <subfield code="a">Clasificación de riesgos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080602659</subfield>
      <subfield code="a">Modelos econométricos</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20170007906</subfield>
      <subfield code="a">Shi, Kun</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000420</subfield>
      <subfield code="t">Astin bulletin</subfield>
      <subfield code="d">Belgium : ASTIN and AFIR Sections of the International Actuarial Association</subfield>
      <subfield code="x">0515-0361</subfield>
      <subfield code="g">01/05/2017 Volumen 47 Número 2 - mayo 2017 , p. 437-465</subfield>
    </datafield>
  </record>
</collection>