Embrace probabilistic risk models for the world's biggest agricultural producers
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<rdf:Description>
<dc:date>2017-09-01</dc:date>
<dc:description xml:lang="es">Sumario: Agricultural risks are very complex and academia and the insurance industry need to work hand-in-hand to meet the challenges. Dr Laurent Marescot from RMS urges the insurance sector to look towards comprehensive probabilistic risk models to underwrite this class of insurance.</dc:description>
<dc:identifier>https://documentacion.fundacionmapfre.org/documentacion/publico/es/bib/161787.do</dc:identifier>
<dc:language>eng</dc:language>
<dc:rights xml:lang="es">InC - http://rightsstatements.org/vocab/InC/1.0/</dc:rights>
<dc:subject xml:lang="es">Mercado agrícola</dc:subject>
<dc:subject xml:lang="es">Mercado de seguros</dc:subject>
<dc:subject xml:lang="es">Modelos probabílisticos</dc:subject>
<dc:type xml:lang="es">Artículos y capítulos</dc:type>
<dc:title xml:lang="es">Embrace probabilistic risk models for the world's biggest agricultural producers </dc:title>
<dc:format xml:lang="es">3 p.</dc:format>
<dc:relation xml:lang="es">En: Asia insurance review. - Singapore : Ins Communications Pte Ltd., 2009- = ISSN 0218-2696. - 01/09/2017 Número 9 - septiembre 2017 , p. 70-72</dc:relation>
</rdf:Description>
</rdf:RDF>