lndifference pricing of a GLWB option in variable annuities
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20170033257</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20171122122200.0</controlfield>
<controlfield tag="008">171017e20170605esp|||p |0|||b|spa d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="0">MAPA20170013204</subfield>
<subfield code="a">Choi, Jungmin</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">lndifference pricing of a GLWB option in variable annuities</subfield>
<subfield code="c">Jungmin Choi</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">We investigate the valuation problem of variable annuities with guaranteed lifelong/lifetime withdrawal benefit (GLWB) options, which give the policyholder the right to withdraw a specified amount as long as he or she lives, regardless of the performance of the investment. We assume the static approach that the policyholder¿s withdrawal rate is a constant throughout the life of the contract. We apply the principle of equivalent utility to find the indifference price for a variable annuity with a GLWB contract with an equity-indexed death benefit. Using an exponential utility function, Hamilton-Jacobi-Bellman (HJB) type partial differential equations (PDEs) are derived for the pricing functions. We first assume the mortality is deterministic, and the pricing PDE is solved numerically using a finite difference method. The effects of various parameters are investigated, including the age at inception of the policyholder, withdrawal rate, risk-free rate, and volatility of the underlying asset. We also consider a roll-up option and analyze the effect of delaying the start of the withdrawals. Another pricing PDE is derived with a stochastic mortality, when the force of mortality is modeled with a stochastic differential equation. A finite difference method is used again to solve the pricing PDE numerically, and the sensitivities of the GLWB contracts with respect to the withdrawal rate and the risk-free rate are explored.</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080592011</subfield>
<subfield code="a">Modelos actuariales</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080555306</subfield>
<subfield code="a">Mortalidad</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080579258</subfield>
<subfield code="a">Cálculo actuarial</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077000239</subfield>
<subfield code="t">North American actuarial journal</subfield>
<subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
<subfield code="x">1092-0277</subfield>
<subfield code="g">05/06/2017 Tomo 21 Número 2 - 2017 , p. 281-296</subfield>
</datafield>
</record>
</collection>