Búsqueda

Predictive modeling of obesity prevalence for the U.S. population

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20190014601</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20190524085525.0</controlfield>
    <controlfield tag="008">190521e20190301esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20190006378</subfield>
      <subfield code="a">Daawin, Palma</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Predictive modeling of obesity prevalence for the U.S. population</subfield>
      <subfield code="c">Palma Daawin, Seonjin Kim, Tatjana Miljkovic</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">Modeling obesity prevalence is an important part of the evaluation of mortality risk. A large volume of literature exists in the area of modeling mortality rates, but very few models have been developed for modeling obesity prevalence. In this study we propose a new stochastic approach for modeling obesity prevalence that accounts for both period and cohort effects as well as the curvilinear effects of age. Our model has good predictive power as we utilize multivariate ARIMA models for forecasting future obesity rates. The proposed methodology is illustrated on the U.S. population, aged 2390, during the period 19882012. Forecasts are validated on actual data for the period 20132015 and it is suggested that the proposed model performs better than existing models.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080592059</subfield>
      <subfield code="a">Modelos predictivos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080548421</subfield>
      <subfield code="a">Obesidad</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080555306</subfield>
      <subfield code="a">Mortalidad</subfield>
    </datafield>
    <datafield tag="651" ind1=" " ind2="1">
      <subfield code="0">MAPA20080638337</subfield>
      <subfield code="a">Estados Unidos</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20190006385</subfield>
      <subfield code="a">Kim, Seonjin</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20190006392</subfield>
      <subfield code="a">Miljkovic, Tatjana</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000239</subfield>
      <subfield code="t">North American actuarial journal</subfield>
      <subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
      <subfield code="x">1092-0277</subfield>
      <subfield code="g">01/03/2019 Tomo 23 Número 1 - 2019 , p. 64-81</subfield>
    </datafield>
  </record>
</collection>