Búsqueda

Frequentist inference in insurance ratemaking models adjusting for misrepresentation

Recurso electrónico / Electronic resource
Sección: Artículos
Título: Frequentist inference in insurance ratemaking models adjusting for misrepresentation / Rexford M. Akakpo, Míchelle Xia, Alan M. PolanskyAutor: Akakpo, Rexford M.
Descripción física: 30 p.Notas: Sumario: In insurance underwriting, misrepresentation represents the type of insurance fraud when an applicant purposely makes a false statement on a risk factor that may lower his or her cost of insurance. Under the insurance ratemaking context, we propose to use the expectation-maximization (EM) algorithm to perform maximum likelihood estimation of the regression effects and the prevalence of misrepresentation for the misrepresentation model proposed by Xia and Gustafson [(2016) The Canadian Journal of Statistics, 44, 198218]. For applying the EM algorithm, the unobserved status of misrepresentation is treated as a latent variable in the complete-data likelihood function. We derive the iterative formulas for the EM algorithm and obtain the analytical form of the Fisher information matrix for frequentist inference on the parameters of interest for lognormal losses. We implement the algorithm and demonstrate that valid inference can be obtained on the risk effect despite the unobserved status of misrepresentation. Applying the proposed algorithm, we perform a loss severity analysis with the Medical Expenditure Panel Survey data. The analysis reveals not only the potential impact misrepresentation may have on the risk effect but also statistical evidence on the presence of misrepresentation in the self-reported insurance status. Registros relacionados: En: Astin bulletin. - Belgium : ASTIN and AFIR Sections of the International Actuarial Association = ISSN 0515-0361. - 01/01/2019 Volumen 49 Número 1 - enero 2019 , p. 117-146Materia / lugar / evento: Matemática del seguro Fraude en el seguro Algoritmos Fraude Otros autores: Xia, Míchelle
Polansky, Alan M.
Otras clasificaciones: 6
Ver detalle del número