CAT bond pricing under a product probability measure with pot risk characterization
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20190019477</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20190626151102.0</controlfield>
<controlfield tag="008">190621e20190501esp|||p |0|||b|spa d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="0">MAPA20080650421</subfield>
<subfield code="a">Tang, Qihe</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">CAT bond pricing under a product probability measure with pot risk characterization</subfield>
<subfield code="c">Qihe Tang, Zhongyi Yuan</subfield>
</datafield>
<datafield tag="300" ind1=" " ind2=" ">
<subfield code="a">34 p. </subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">Frequent large losses from recent catastrophes have caused great concerns among insurers/reinsurers, who then turn to seek mitigations of such catastrophe risks by issuing catastrophe (CAT) bonds and thereby transferring the risks to the bond market. Whereas, the pricing of CAT bonds remains a challenging task, mainly due to the facts that the CAT bond market is incomplete and that the pricing usually requires knowledge about the tail of the risks. In this paper, we propose a general pricing framework based on a product pricing measure, which combines a distorted probability measure that prices the catastrophe risks underlying the CAT bond with a risk-neutral probability measure that prices interest rate risk. We also demonstrate the use of the peaks over threshold (POT) method to uncover the tail risk. Finally, we conduct case studies using Mexico and California earthquake data to demonstrate the applicability of our pricing framework.</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080602437</subfield>
<subfield code="a">Matemática del seguro</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080600204</subfield>
<subfield code="a">Catástrofes naturales</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080615673</subfield>
<subfield code="a">Transferencia de riesgos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080564322</subfield>
<subfield code="a">Tarificación</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080613105</subfield>
<subfield code="a">Análisis probabilísticos</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20190008761</subfield>
<subfield code="a">Yuan, Zhongyi</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077000420</subfield>
<subfield code="t">Astin bulletin</subfield>
<subfield code="d">Belgium : ASTIN and AFIR Sections of the International Actuarial Association</subfield>
<subfield code="x">0515-0361</subfield>
<subfield code="g">01/05/2019 Volumen 49 Número 2 - mayo 2019 , p. 457-490</subfield>
</datafield>
</record>
</collection>