Deep learning at the interface of agricultural insurance risk and spatio-temporal uncertainty in weather extremes
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20200004868</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20200221135947.0</controlfield>
<controlfield tag="008">200217e20191202usa|||p |0|||b|eng d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">eng</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">329</subfield>
</datafield>
<datafield tag="100" ind1="1" ind2=" ">
<subfield code="0">MAPA20200003434</subfield>
<subfield code="a">Ghahari, Azar</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Deep learning at the interface of agricultural insurance risk and spatio-temporal uncertainty in weather extremes</subfield>
<subfield code="c">Azar Ghahari [et at.]</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">Challenges in risk estimation for agricultural insurance bring to the fore statistical problems of modeling complex weather and climate dynamics, analyzing massive multi-resolution, multi-source data. Nonstationary space-time structure of such data also introduces greater complexity when assessing the highly nonlinear relationship between weather events and crop yields. In this setting, conventional parametric statistical and actuarial models may no longer be appropriate. In turn, modern machine learning and artificial intelligence procedures, which allow fast and automatic learning of hidden dependencies and structures, offer multiple operational benefits and now prove to deliver a highly competitive performance in a variety of applications, from credit card fraud detection to the next best product offer and customer segmentation. Yet their potential in actuarial sciences, and particularly agricultural insurance, remains largely untapped. In this project, we introduce a modern deep learning methodology into the assessment of climate-induced risks in agriculture and evaluate its potential to deliver a higher predictive accuracy, speed, and scalability. We present a pilot study of deep learning algorithmsspecifically, deep belief networksusing historical crop yields, weather stationbased records, and gridded weather reanalysis data for Manitoba, Canada from 1996 to 2011. Our findings show that deep learning can attain higher prediction accuracy, based on benchmarking its performance against more conventional approaches, especially in multiscale, heterogeneous data environments of agricultural risk management.</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080578213</subfield>
<subfield code="a">Seguros agrarios</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080601522</subfield>
<subfield code="a">Evaluación de riesgos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080630010</subfield>
<subfield code="a">Condiciones climáticas ambientales</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080600273</subfield>
<subfield code="a">Climatología agrícola</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080575328</subfield>
<subfield code="a">Cultivo agrícola</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080560447</subfield>
<subfield code="a">Rendimiento</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080586546</subfield>
<subfield code="a">Nuevas tecnologías</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080553128</subfield>
<subfield code="a">Algoritmos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080579258</subfield>
<subfield code="a">Cálculo actuarial</subfield>
</datafield>
<datafield tag="651" ind1=" " ind2="1">
<subfield code="0">MAPA20080638337</subfield>
<subfield code="a">Estados Unidos</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077000239</subfield>
<subfield code="t">North American actuarial journal</subfield>
<subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
<subfield code="x">1092-0277</subfield>
<subfield code="g">02/12/2019 Tomo 23 Número 4 - 2019 , p. 535- 550</subfield>
</datafield>
</record>
</collection>