An EM algorithm for fitting a new class of mixed exponential regression models with varying dispersion
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<rdf:Description>
<dc:creator>Tzougas, George</dc:creator>
<dc:creator>Karlis, Dimitris </dc:creator>
<dc:date>2020-05-01</dc:date>
<dc:description xml:lang="es">Sumario: Regression modelling involving heavy-tailed response distributions, which have heavier tails than the exponential distribution, has become increasingly popular in many insurance settings including non-life insurance. Mixed Exponential models can be considered as a natural choice for the distribution of heavy-tailed claim sizes since their tails are not exponentially bounded. This paper is concerned with introducing a general family of mixed Exponential regression models with varying dispersion which can efficiently capture the tail behaviour of losses. Our main achievement is that we present an Expectation- Maximization (EM)-type algorithm which can facilitate maximum likelihood (ML) estimation for our class of mixed Exponential models which allows for regression specifications for both the mean and dispersion parameters. Finally, a real data application based on motor insurance data is given to illustrate the versatility of the proposed EM-type algorithm.</dc:description>
<dc:identifier>https://documentacion.fundacionmapfre.org/documentacion/publico/es/bib/171971.do</dc:identifier>
<dc:language>eng</dc:language>
<dc:rights xml:lang="es">InC - http://rightsstatements.org/vocab/InC/1.0/</dc:rights>
<dc:subject xml:lang="es">Cálculo actuarial</dc:subject>
<dc:subject xml:lang="es">Algoritmos</dc:subject>
<dc:subject xml:lang="es">Modelos actuariales</dc:subject>
<dc:subject xml:lang="es">Modelos de dispersión</dc:subject>
<dc:type xml:lang="es">Artículos y capítulos</dc:type>
<dc:title xml:lang="es">An EM algorithm for fitting a new class of mixed exponential regression models with varying dispersion</dc:title>
<dc:relation xml:lang="es">En: Astin bulletin. - Belgium : ASTIN and AFIR Sections of the International Actuarial Association = ISSN 0515-0361. - 01/05/2020 Volumen 50 Número 2 - mayo 2020 , p. 555-583</dc:relation>
</rdf:Description>
</rdf:RDF>