An EM algorithm for fitting a new class of mixed exponential regression models with varying dispersion
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20200019121</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20200610090110.0</controlfield>
<controlfield tag="008">200604e20200501bel|||p |0|||b|eng d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="100" ind1="1" ind2=" ">
<subfield code="0">MAPA20140009800</subfield>
<subfield code="a">Tzougas, George</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">An EM algorithm for fitting a new class of mixed exponential regression models with varying dispersion</subfield>
<subfield code="c">George Tzougas, Dimitris Karlis</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">Regression modelling involving heavy-tailed response distributions, which have heavier tails than the exponential distribution, has become increasingly popular in many insurance settings including non-life insurance. Mixed Exponential models can be considered as a natural choice for the distribution of heavy-tailed claim sizes since their tails are not exponentially bounded. This paper is concerned with introducing a general family of mixed Exponential regression models with varying dispersion which can efficiently capture the tail behaviour of losses. Our main achievement is that we present an Expectation- Maximization (EM)-type algorithm which can facilitate maximum likelihood (ML) estimation for our class of mixed Exponential models which allows for regression specifications for both the mean and dispersion parameters. Finally, a real data application based on motor insurance data is given to illustrate the versatility of the proposed EM-type algorithm.</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080579258</subfield>
<subfield code="a">Cálculo actuarial</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080553128</subfield>
<subfield code="a">Algoritmos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080592011</subfield>
<subfield code="a">Modelos actuariales</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080602611</subfield>
<subfield code="a">Modelos de dispersión</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20200013471</subfield>
<subfield code="a">Karlis, Dimitris </subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077000420</subfield>
<subfield code="t">Astin bulletin</subfield>
<subfield code="d">Belgium : ASTIN and AFIR Sections of the International Actuarial Association</subfield>
<subfield code="x">0515-0361</subfield>
<subfield code="g">01/05/2020 Volumen 50 Número 2 - mayo 2020 , p. 555-583</subfield>
</datafield>
</record>
</collection>