An Effective bias-corrected bagging method for the valuation of large variable annuity portfolios
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20200029762</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20200924174412.0</controlfield>
<controlfield tag="008">200924e20200901bel|||p |0|||b|eng d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="0">MAPA20200019138</subfield>
<subfield code="a">Gweon, Hyukjun </subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="3">
<subfield code="a">An Effective bias-corrected bagging method for the valuation of large variable annuity portfolios</subfield>
<subfield code="c">Hyukjun Gweon ,Shu Li, Rogemar Mamon</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">To evaluate a large portfolio of variable annuity (VA) contracts, many insurance companies rely on Monte Carlo simulation, which is computationally intensive. To address this computational challenge, machine learning techniques have been adopted in recent years to estimate the fair market values (FMVs) of a large number of contracts. It is shown that bootstrapped aggregation (bagging), one of the most popular machine learning algorithms, performs well in valuing VAcontracts using related attributes. In this article, we highlight the presence of prediction bias of bagging and use the bias-corrected (BC) bagging approach to reduce the bias and thus improve the predictive performance. Experimental results demonstrate the effectiveness of BC bagging as compared with bagging, boosting, and model points in terms of prediction accuracy.</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080573614</subfield>
<subfield code="a">Renta vitalicia</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20200019183</subfield>
<subfield code="a">Anualidad variable</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080579258</subfield>
<subfield code="a">Cálculo actuarial</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080602437</subfield>
<subfield code="a">Matemática del seguro</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077000420</subfield>
<subfield code="t">Astin bulletin</subfield>
<subfield code="d">Belgium : ASTIN and AFIR Sections of the International Actuarial Association</subfield>
<subfield code="x">0515-0361</subfield>
<subfield code="g">01/09/2020 Volumen 50 Número 3 - septiembre 2020 , p. 853-871</subfield>
</datafield>
</record>
</collection>