Underwriting excellence for the future : machine intelligence will see higher success rate in a post-COVID 19 era
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cam a22000004b 4500</leader>
<controlfield tag="001">MAP20210006555</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20220911190149.0</controlfield>
<controlfield tag="008">181221e20210223deu|||| ||| ||eng d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">219</subfield>
</datafield>
<datafield tag="100" ind1="1" ind2=" ">
<subfield code="0">MAPA20150008107</subfield>
<subfield code="a">Sharan, Rajeev</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Underwriting excellence for the future</subfield>
<subfield code="b">: machine intelligence will see higher success rate in a post-COVID 19 era</subfield>
<subfield code="c">Rajeev Sharan</subfield>
</datafield>
<datafield tag="260" ind1=" " ind2=" ">
<subfield code="a">Zurich</subfield>
<subfield code="b">Swiss Re Institute</subfield>
<subfield code="c">2021</subfield>
</datafield>
<datafield tag="300" ind1=" " ind2=" ">
<subfield code="a">2 p.</subfield>
</datafield>
<datafield tag="490" ind1="0" ind2=" ">
<subfield code="a">Economic insights</subfield>
<subfield code="v">Issue 4/2021</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">Accelerated digitalisation and associated large volumes of consumer data in the post COVID-19 era could facilitate greater success of MI projects. To date the adoption rate has been low, with over 95% failure due to lack of high-quality training data. The rise in online purchasing could manifest in MI opportunities for insurers to strengthen underwriting and predictive modelling.</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20170005476</subfield>
<subfield code="a">Machine learning</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080568641</subfield>
<subfield code="a">Digitalización</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20200005599</subfield>
<subfield code="a">COVID-19</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080552022</subfield>
<subfield code="a">Pandemias</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080592059</subfield>
<subfield code="a">Modelos predictivos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080586294</subfield>
<subfield code="a">Mercado de seguros</subfield>
</datafield>
<datafield tag="710" ind1="2" ind2=" ">
<subfield code="0">MAPA20170013402</subfield>
<subfield code="a">Swiss Re Institute</subfield>
</datafield>
<datafield tag="830" ind1=" " ind2="0">
<subfield code="0">MAPA20160007411</subfield>
<subfield code="a">Economic insight</subfield>
</datafield>
</record>
</collection>