Búsqueda

Design of Ensemble Classifier Model Based on MLP Neural Network For Breast Cancer Diagnosis

<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-8.xsd">
<mods version="3.8">
<titleInfo>
<title>Design of Ensemble Classifier Model Based on MLP Neural Network For Breast Cancer Diagnosis</title>
</titleInfo>
<name type="personal" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20210030314">
<namePart>Boroumand, Neda</namePart>
<nameIdentifier>MAPA20210030314</nameIdentifier>
</name>
<typeOfResource>text</typeOfResource>
<genre authority="marcgt">periodical</genre>
<originInfo>
<place>
<placeTerm type="code" authority="marccountry">esp</placeTerm>
</place>
<dateIssued encoding="marc">2021</dateIssued>
<issuance>serial</issuance>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</language>
<physicalDescription>
<form authority="marcform">print</form>
</physicalDescription>
<abstract displayLabel="Summary">Nowadays, breast cancer is one of the leading causes of death women in the worldwide. If breast cancer is detected at the beginning stage, it can ensure long-term survival. Numerous methods have been proposed for the early prediction of this cancer, however, efforts are still ongoing given the importance of the problem. Artificial Neural Networks (ANN) have been established as some of the most dominant machine learning algorithms, where they are very popular for prediction and classification work. In this paper, an Intelligent Ensemble Classification method based on Multi-Layer Perceptron neural network (IEC-MLP) is proposed for breast cancer diagnosis. The proposed method is split into two stages, parameters optimization and ensemble classification. In the first stage, the MLP Neural Network (MLP-NN) parameters, including optimal features, hidden layers, hidden nodes and weights, are optimized with an Evolutionary Algorithm (EA) for maximize the classification accuracy. In the second stage, an ensemble classification algorithm of MLP-NN is applied to classify the patient with optimized parameters. Our proposed IEC-MLP method which can not only help to reduce the complexity of MLP-NN and effectively selection the optimal feature subset, but it can also obtain the minimum misclassification cost. The classification results were evaluated using the IEC-MLP for different breast cancer datasets and the prediction results obtained were very promising (98.74% accuracy on the WBCD dataset). Meanwhile, the proposed method outperforms the GAANN and CAFS algorithms and other state-of-the-art classifiers. In addition, IEC-MLP could also be applied to other cancer diagnosis.</abstract>
<note type="statement of responsibility">Amin Rezaeipanah, Neda Boroumand</note>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080548124">
<topic>Medicina</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20210019166">
<topic>Cáncer de mama</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080557850">
<topic>Diagnóstico</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080611200">
<topic>Inteligencia artificial</topic>
</subject>
<classification authority="">922.134</classification>
<relatedItem type="host">
<titleInfo>
<title>Revista Iberoamericana de Inteligencia Artificial</title>
</titleInfo>
<originInfo>
<publisher>IBERAMIA, Sociedad Iberoamericana de Inteligencia Artificial , 2018-</publisher>
</originInfo>
<identifier type="issn">1988-3064</identifier>
<identifier type="local">MAP20200034445</identifier>
<part>
<text>15/02/2021 Volumen 24 Número 67 - febrero 2021 , p. 147-156</text>
</part>
</relatedItem>
<recordInfo>
<recordContentSource authority="marcorg">MAP</recordContentSource>
<recordCreationDate encoding="marc">210727</recordCreationDate>
<recordChangeDate encoding="iso8601">20220911185849.0</recordChangeDate>
<recordIdentifier source="MAP">MAP20210024580</recordIdentifier>
<languageOfCataloging>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</languageOfCataloging>
</recordInfo>
</mods>
</modsCollection>