Optimal dividends paid in a foreign currency for a Lévy Insurance risk model
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20210026348</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20210927115820.0</controlfield>
<controlfield tag="008">210927e20210906esp|||p |0|||b|spa d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="100" ind1="1" ind2=" ">
<subfield code="0">MAPA20210032653</subfield>
<subfield code="a">Eisenberg, Julia</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Optimal dividends paid in a foreign currency for a Lévy Insurance risk model</subfield>
<subfield code="c">Julia Eisenberg, Zbigniew Palmowski</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">This article considers an optimal dividend distribution problem for an insurance company where the dividends are paid in a foreign currency. In the absence of dividend payments, our risk process follows a spectrally negative Lévy process. We assume that the exchange rate is described by a an exponentially Lévy process, possibly containing the same risk sources like the surplus of the insurance company under consideration. The control mechanism chooses the amount of dividend payments. The objective is to maximize the expected dividend payments received until the time of ruin and a penalty payment at the time of ruin, which is an increasing function of the size of the shortfall at ruin. A complete solution is presented to the corresponding stochastic control problem. Via the corresponding HamiltonJacobiBellman equation we find the necessary and sufficient conditions for optimality of a single dividend barrier strategy. A number of numerical examples illustrate the theoretical analysis.</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080591182</subfield>
<subfield code="a">Gerencia de riesgos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080541750</subfield>
<subfield code="a">Moneda</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20090041738</subfield>
<subfield code="a">Reparto de dividendos</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20210032660</subfield>
<subfield code="a">Palmowski, Zbigniew</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077000239</subfield>
<subfield code="t">North American actuarial journal</subfield>
<subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
<subfield code="x">1092-0277</subfield>
<subfield code="g">06/09/2021 Tomo 25 Número 3 - 2021 , p. 417-437</subfield>
</datafield>
<datafield tag="856" ind1=" " ind2=" ">
<subfield code="y">MÁS INFORMACIÓN</subfield>
<subfield code="u">mailto:centrodocumentacion@fundacionmapfre.org?subject=Consulta%20de%20una%20publicaci%C3%B3n%20&body=Necesito%20m%C3%A1s%20informaci%C3%B3n%20sobre%20este%20documento%3A%0A%0A%5Banote%20el%20titulo%20completo%20del%20documento%20del%20que%20desea%20informaci%C3%B3n%5D%0A%0AGracias</subfield>
</datafield>
</record>
</collection>