Búsqueda

Comparative performance analysis between Gradient Boosting models and GLMs for non-life pricing

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cam a22000004b 4500</leader>
    <controlfield tag="001">MAP20210035753</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20220911185740.0</controlfield>
    <controlfield tag="008">211217s2021    esp||||       ||| ||eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20210037092</subfield>
      <subfield code="a">Martínez de Lizarduy Kostornichenko, Viktor</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Comparative performance analysis between Gradient Boosting models and GLMs for non-life pricing</subfield>
      <subfield code="c">Viktor Martínez de Lizarduy Kostornichenko</subfield>
    </datafield>
    <datafield tag="260" ind1=" " ind2=" ">
      <subfield code="a">Madrid</subfield>
      <subfield code="b">Universidad Carlos III de Madrid</subfield>
      <subfield code="c">2021</subfield>
    </datafield>
    <datafield tag="300" ind1=" " ind2=" ">
      <subfield code="a">118 p.</subfield>
    </datafield>
    <datafield tag="505" ind1="0" ind2=" ">
      <subfield code="a">Trabajo Fin de Master del Master en Ciencias Actuariales y Financieras de la Escuela de Postgrado de la Universidad Carlos III de Madrid. Tutores:  José Miguel Rodríguez-Pardo del Castillo, Jesús Simón del Potro Curso 2020-2021</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">Modelling the behavior of risks is one of the most fundamental pillars in the insurance business throughout all its branches. Actuarial practitioners have always been interested in finding the best statistical tools to capture the nature of the risks they undertake from their clients, and in the last decades these techniques have thrived through the implementation and expansion of Machine Learning, both to process and handle large amounts of data, as well as to carry out advanced computations. Specifically, and as the purpose of this document, we will be focusing on the Gradient Boosting algorithms from the sub-family of ensemble methods used for regression to predict and model basic pricing variables such as frequency and claim severities, and compare their predictive and pricing capabilities with classical Generalized Linear Models. In our study case of a French insurance motor portfolio, we found that Gradient Boosting models have a stronger predictive performance and a higher pricing ability to adjust the premiums to both high risk and low risk profiles. And finally, we conclude that these models can be used to support and improve GLMs and their pricing results as Machine Learning continues to settle in the actuarial modeling paradigm.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080592011</subfield>
      <subfield code="a">Modelos actuariales</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080588953</subfield>
      <subfield code="a">Análisis de riesgos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080592059</subfield>
      <subfield code="a">Modelos predictivos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080604127</subfield>
      <subfield code="a">Tarificación a priori</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20170005476</subfield>
      <subfield code="a">Machine learning</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080573935</subfield>
      <subfield code="a">Seguros no vida</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080594589</subfield>
      <subfield code="a">Análisis comparativo</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20160001693</subfield>
      <subfield code="a">Modelos GLM</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20210037177</subfield>
      <subfield code="a">Modelos GBM</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080664510</subfield>
      <subfield code="a">Trabajos de investigación</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20140014897</subfield>
      <subfield code="a">Rodríguez-Pardo del Castillo, José Miguel</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20160001525</subfield>
      <subfield code="a">Simón del Potro, Jesús Ramón</subfield>
    </datafield>
    <datafield tag="710" ind1="2" ind2=" ">
      <subfield code="0">MAPA20080455026</subfield>
      <subfield code="a">Universidad Carlos III de Madrid</subfield>
    </datafield>
    <datafield tag="830" ind1=" " ind2="0">
      <subfield code="0">MAPA20160014013</subfield>
      <subfield code="a">Trabajos Fin de Master/de Grado</subfield>
    </datafield>
    <datafield tag="856" ind1=" " ind2=" ">
      <subfield code="q">application/pdf</subfield>
      <subfield code="w">1113083</subfield>
      <subfield code="y">Recurso electrónico / Electronic resource</subfield>
    </datafield>
  </record>
</collection>