Búsqueda

The impact of artificial intelligence along the insurance value chain and on the insurability of risks

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20220011570</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20220911185552.0</controlfield>
    <controlfield tag="008">220419e20220404esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">7</subfield>
    </datafield>
    <datafield tag="100" ind1=" " ind2=" ">
      <subfield code="0">MAPA20080644529</subfield>
      <subfield code="a">Eling, Martin</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">The impact of artificial intelligence along the insurance value chain and on the insurability of risks</subfield>
      <subfield code="c">Martin Eling, Davide Nuessle, Julian Staubli </subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">Based on a data set of 91 papers and 22 industry studies, we analyse the impact of artificial intelligence on the insurance sector using Porter's (1985) value chain and Berliner's (1982) insurability criteria. Additionally, we present future research directions, from both the academic and practitioner points of view. The results illustrate that both cost efficiencies and new revenue streams can be realised, as the insurance business model will shift from loss compensation to loss prediction and prevention. Moreover, we identify two possible developments with respect to the insurability of risks. The first is that the application of artificial intelligence by insurance companies might allow for a more accurate prediction of loss probabilities, thus reducing one of the industry's most inherent problems, namely asymmetric information. The second development is that artificial intelligence might change the risk landscape significantly by transforming some risks from low-severity/high-frequency to high-severity/low-frequency. This requires insurance companies to rethink traditional insurance coverage and design adequate insurance products.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080611200</subfield>
      <subfield code="a">Inteligencia artificial</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080591182</subfield>
      <subfield code="a">Gerencia de riesgos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080574857</subfield>
      <subfield code="a">Cadena del valor</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080586294</subfield>
      <subfield code="a">Mercado de seguros</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20220003902</subfield>
      <subfield code="a">Nuessle, Davide</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20220003919</subfield>
      <subfield code="a">Staubli, Julian</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077100215</subfield>
      <subfield code="g">04/04/2022 Volumen 47 Número 2 - abril 2022 , p. 205-241</subfield>
      <subfield code="x">1018-5895</subfield>
      <subfield code="t">Geneva papers on risk and insurance : issues and practice</subfield>
      <subfield code="d">Geneva : The Geneva Association, 1976-</subfield>
    </datafield>
  </record>
</collection>