Búsqueda

Practical partial equilibrium framework for pricing of mortality-linked instruments in continuous time

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20220019866</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20220701143235.0</controlfield>
    <controlfield tag="008">220701e20220606che|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20130011592</subfield>
      <subfield code="a">Jevtic, Petar</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Practical partial equilibrium framework for pricing of mortality-linked instruments in continuous time</subfield>
      <subfield code="c">Petar Jevtic, Minsuk Kwak, Traian A. Pirvu </subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">This work considers a partial equilibrium approach for pricing longevity bonds in a stochastic mortality intensity setting. Thus, the pricing methodology developed in this work is based on a foundational economic principle and is realistic for the currently illiquid life market. Our model consists of economic agents who trade in risky financial security and longevity bonds to maximize the monetary utilities of their trades and income. Stochastic mortality intensity affects agents' income, resulting in market incompleteness. The longevity bond introduced acts as a hedge against mortality risk, and we prove that it completes the market. From a practical perspective, we characterize and compute the endogenous equilibrium bond price. In a realistic setting with two agents in a transaction, numerical experiments confirm the expected intuition of price dependence of model parameters.

</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080555306</subfield>
      <subfield code="a">Mortalidad</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080555016</subfield>
      <subfield code="a">Longevidad</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080545062</subfield>
      <subfield code="a">Precios</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20220006705</subfield>
      <subfield code="a">Kwak, Minsuk</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20120023109</subfield>
      <subfield code="a">Pirvu, T.A.</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20220007085</subfield>
      <subfield code="g">06/06/2022 Volúmen 12 - Número 1 - junio 2022 , p. 249-273</subfield>
      <subfield code="t">European Actuarial Journal</subfield>
      <subfield code="d">Cham, Switzerland  : Springer Nature Switzerland AG,  2021-2022</subfield>
    </datafield>
  </record>
</collection>