A bias-corrected Least-Squares Monte Carlo for solving multi-period utility models
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20220019910</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20220704123002.0</controlfield>
<controlfield tag="008">220704e20220606che|||p |0|||b|eng d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="100" ind1="1" ind2=" ">
<subfield code="0">MAPA20220006750</subfield>
<subfield code="a">Andréasson, Johan G.</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">A bias-corrected Least-Squares Monte Carlo for solving multi-period utility models</subfield>
<subfield code="c">Johan G. Andréasson, Pavel V. Shevchenko</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">The Least-Squares Monte Carlo (LSMC) method has gained popularity in recent years due to its ability to handle multi-dimensional stochastic control problems, including problems with state variables affected by control. However, when applied to the stochastic control problems in the multi-period expected utility models, such as finding optimal decisions in life-cycle expected utility models, the regression fit tends to contain errors which accumulate over time and typically blow up the numerical solution. In this paper we propose to transform the value function of the problems to improve the regression fit, and then using either the smearing estimate or smearing estimate with controlled heteroskedasticity to avoid the re-transformation bias in the estimates of the conditional expectations calculated in the LSMC algorithm. We also present and utilise recent improvements in the LSMC algorithms such as control randomisation with policy iteration to avoid accumulation of regression errors over time. Presented numerical examples demonstrate that transformation method leads to an accurate solution. In addition, in the forward simulation stage of the control randomisation algorithm, we propose a re-sampling of the state and control variables in their full domain at each time t and then simulating corresponding state variable at </subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080579258</subfield>
<subfield code="a">Cálculo actuarial</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080608606</subfield>
<subfield code="a">Simulación Monte Carlo</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20220007085</subfield>
<subfield code="g">06/06/2022 Volúmen 12 - Número 1 - junio 2022 , p. 349-379</subfield>
<subfield code="t">European Actuarial Journal</subfield>
<subfield code="d">Cham, Switzerland : Springer Nature Switzerland AG, 2021-2022</subfield>
</datafield>
</record>
</collection>