Fitting censored and truncated regression data using the mixture of experts models
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20230012444</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20231214132334.0</controlfield>
<controlfield tag="008">230613e20231205usa|||p |0|||b|eng d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="100" ind1="1" ind2=" ">
<subfield code="0">MAPA20190015158</subfield>
<subfield code="a">Chai Fung , Tsz</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Fitting censored and truncated regression data using the mixture of experts models</subfield>
<subfield code="c">Tsz Chai Fung, Andrei L. Badescu & X. Sheldon Lin</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">The logit-weighted reduced mixture of experts model (LRMoE) is a flexible yet analytically tractable non-linear regression model. Though it has shown usefulness in modeling insurance loss frequencies and severities, model calibration becomes challenging when censored and truncated data are involved, which is common in actuarial practice. In this article, we present an extended expectationconditional maximization (ECM) algorithm that efficiently fits the LRMoE to random censored and random truncated regression data. The effectiveness of the proposed algorithm is empirically examined through a simulation study. Using real automobile insurance data sets, the usefulness and importance of the proposed algorithm are demonstrated through two actuarial applications: individual claim reserving and deductible ratemaking</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080579258</subfield>
<subfield code="a">Cálculo actuarial</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080593063</subfield>
<subfield code="a">Regresión no lineal</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080568085</subfield>
<subfield code="a">Bases de datos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080578848</subfield>
<subfield code="a">Análisis de datos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080553128</subfield>
<subfield code="a">Algoritmos</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20210030147</subfield>
<subfield code="a">Badescu, Andrei L.</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20170014539</subfield>
<subfield code="a">Sheldon Lin, X.</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077000239</subfield>
<subfield code="g">05/12/2022 Tomo 26 Número 4 - 2022 , p. 496-520</subfield>
<subfield code="x">1092-0277</subfield>
<subfield code="t">North American actuarial journal</subfield>
<subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
</datafield>
<datafield tag="856" ind1="0" ind2="0">
<subfield code="y">MÁS INFORMACIÓN</subfield>
<subfield code="u">
mailto:centrodocumentacion@fundacionmapfre.org?subject=Consulta%20de%20una%20publicaci%C3%B3n%20&body=Necesito%20m%C3%A1s%20informaci%C3%B3n%20sobre%20este%20documento%3A%20%0A%0A%5Banote%20aqu%C3%AD%20el%20titulo%20completo%20del%20documento%20del%20que%20desea%20informaci%C3%B3n%20y%20nos%20pondremos%20en%20contacto%20con%20usted%5D%20%0A%0AGracias%20%0A
</subfield>
</datafield>
</record>
</collection>